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‘The end of logic is not  the syllogism  but simple contemplation. The proposition 
is, in fact, the means to this end, and the syllogism is the means to the 
proposition.’ (Leibniz 1666, 75)

1. Introduction

 Though in my presentation here I will try to be as objective as possible some of 
my biases will come through.  Let me then lay some of my cards on the table.  

Whereas most disciplines are first order disciplines formal logic is essentially not 
a first order discipline. What I mean by ‘first order discipline’ is that physics, chemistry, 
biology, geology, geography, psychology, economics, sociology and so on, explain a 
particular domain of reality; hence they are directly about the world.  Though there are 
methodological considerations in these disciplines that are second order, they are 
essentially  first order disciplines.  Neither mathematics nor philosophy are first order 
disciplines in this way.  That is not to say that mathematics and philosophy are not about 
the world.  But they  are about second order properties or concepts about the world.  Logic 
in as much as it is concerned with the principles of inference is a first order discipline as 
these rules of inference are generally taken to be laws of thought and human minds are 
very much in the world.  William Hamilton (1860, 3) puts it: ‘Logic is the Science of 
Laws of Thought as Thought’.  However, formal logic is a second order discipline as it is 
‘a science whose propositions are themselves second-order principles about principles of 
inference’  (Kneale and Kneale 1962, 377).  In formal logic then we do not just  discover 
or formulate the principles of inference but also discover or formulate the principles that 
make these principles of inference the correct principles.  This is crucial to the 
development of modern logic.  In modern logic it  is not sufficient to have primitives, 
definitions, rules of inference, axioms and theorems derived from the axioms; but we 
must also prove the consistency  and completeness of the formal system; and even prove 
the deduction theorem which allows us to prove theorems to begin with.  All of this is 
second order or even higher order activity.    

 Logic is also a purely formal discipline. Though the complete realisation and 
implementation of this did not happen until the nineteenth century, logic was always 
evolving towards this.  An underrated figure in this regard was the German Moritz 
Wilhelm Drobisch (1802–1896) who called logic ‘formal philosophy’ and ‘wrote that 
“logic is, in fact, nothing but pure formalism.  It is not meant to be, and must not be, 
anything else.”’ (Vilkko, 207)  

Logic is also not simply  a tool for the sciences and other disciplines.  Hence, I 
will perhaps marginalise people like Mill and empiricists and pragmatists who may  give 
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more emphasis to induction and abduction over deduction.  These three features then of 
second order, formalism, and non-instrument are also features of mathematics and 
philosophy.  It is no wonder then that the origins of logic are in mathematics (in the 
geometrical demonstrations of Thales and Pythagoras) and in philosophy (in the dialectic 
arguments of Parmenides, Zeno and Plato).  And logic does not originate from the 
sciences as much as Aristotle may  have wanted it  to.  Though mathematics and 
philosophy may be the parents of logic, logic has its own autonomy that makes it distinct 
from both her parents.  George Boole, arguably  the most important person in the 
development of modern logic puts this autonomy of logic clearly: 

I am then compelled to assert,  that according to this view of the nature of Philosophy, 
Logic forms no part of it.   On the principle of a true classification, we ought no longer to 
associate Logic and Metaphysics but Logic and Mathematics.  […] Logic resting like 
Geometry upon axiomatic truths, and its theorems constructed upon that general doctrine 
of symbols, which constitutes the foundation of the recognised Analysis. […] Logic not 
only constructs a science, but also inquires into the origins and nature of its own 
principles,—a distinction which is denied to mathematics. (Boole 1847, 13) 

The picture Boole presents here is somewhat different than what I have just given.  He 
first divorces logic from philosophy and weds it  to mathematics, and then he claims that 
logic is distinct from mathematics in that it  inquires into the origins of the nature of its 
own principles.  As Boole says he is referring to a notion of philosophy that was perhaps 
dominant at  his time, however on an alternative interpretation of philosophy going back 
to Plato and Aristotle this feature of inquiry into the nature of its own principles is the 
core of philosophy; hence logic does indeed incorporate philosophy.
 Now, we turn to the emergence of modern logic.  There is often a debate as to 
whether modern logic emerged with George Boole (a mathematician) or Gottlob Frege (a 
philosopher).  There is no doubt that without the golden age of mathematics of the 
eighteenth century  modern logic would not have emerged.  However, the role of 
philosophers in the development of modern logic cannot be ignored.  Couturat  claimed 
that it  was neither Boole nor Frege who were the founders of modern logic, but it was 
another ‘G’ Gottfried Wilhelm Leibniz who was both a mathematician and a philosopher:

En résumé, Leibniz a cu l’idée (plus ou moins précise, plus ou moins fugitive) de toutes 
les opérations de la Logique,  non seulement de la multiplication, de l’addition et de la 
négation, mais mème de la soustraction et de la division.  Il a connu les relations 
fondamentales des deux copules, à savoir: 

(a < b) = (a = ab) = (ab′ = 0).  
Il a trouvé la véritable traduction algébrique des quatre propositions classiques, et cela 
sous ses deux formes principales:

U.A.: Tout a est b   a = ab  ab′ = 0.
U.N.: Nul a est b    a = ab′  ab  = 0.
P.A.: Quelque a est b   a ≠ ab′  ab  ≠ 0.
P.N.: Quelque a n’est pas b  a ≠ ab  ab′ ≠ 0.

Il a découvert les principales lois du Calcul logique, notamment les règles de composition 
et de décomposition.    Enfin, il a très nettement conçu la double interprétation dont ce 
calcul est susceptible, suivant que les termes représentent des concepts ou des 
propositions et la parallélisme remarquable qui en résulte entre les propositions primaires 
et secondaires.  Et un mot, il possédait presque tous les principes de la logique de Boole 
et de Schröder, et sur certains points il était plus avancé que Boole lui-meme. (Couturat, 
1901, pp. 385–6)
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To sum up, Leibniz had conceived the idea (more or less precise,  more or less radical) of 
all the operations of logic, not only of multiplication, addition and  negation, but even of 
subtraction and division.  He was acquainted with the fundamental relations of the two 
copulas known as:

 (a < b) = (a = ab) = (ab′ = 0).  
He found the correct algebraic translation of the four classical propositions, and these 
under their two principal forms:

U.A.: All a is b   a = ab  ab′ = 0.
U.N.: No a is b   a = ab′  ab  = 0.
P.A.: Some a is b   a ≠ ab′  ab  ≠ 0.
P.N.: Some a is not b  a ≠ ab  ab′ ≠ 0.

He discovered the principal laws of the logical calculus, notably the rules of composition 
and decomposition.  Finally, he very clearly conceived that the double interpretation of 
this calculus is susceptible, next he found the terms representing concepts or propositions 
and the remarkable parallelism that resulted between primary and secondary propositions.  
In one word, he possessed almost all the principles of the logic of Boole and Schröder, 
and on certain points he was more advanced than Boole himself.  (my translation)1

I am extremely sympathetic with Couturat’s sentiments.  Aristotle was a scientist and a 
philosopher but not a mathematician.  That is why he could not invent modern logic 
though he did invent formal logic.  Descartes was a mathematician and a philosopher but 
he was not  a philosopher of the calibre of Plato and Aristotle as he did not realise that 
philosophy is essentially  a second order discipline.  Leibniz as a philosopher was of the 
highest calibre.  He realised that  not only was philosophy a second order discipline but it 
could be purely formal like mathematics.  He therefore went in the search of a calculus, a 
logic that is, that would be the formal infrastructure for mathematics as well as for 
philosophy.  This view today is called logicism.  

The critiques of logicism object that if everything is reduced to logic, that is, if 
mathematics and philosophy are reduced to logic and pure formalism, then no ampliative 
knowledge could come about.  However, Leibniz and later Frege actually claimed that 
analytic statements such as those of identities can be ampliative as are Leibniz’s identity 
of indiscernibles and Frege’s definition of number and of zero.  Not only is ampliative 
knowledge possible in logic and mathematics, but such knowledge leads us to discoveries 
about the world.  I think this connection from the inside of formal logic to the discovery 
of the outside world is fascinating and could be worked out though neither Leibniz nor 
Frege would have pushed this point.  I will of course not be able to establish this here, not 
so much because of the paucity of time but because of my inability to do so at this 
moment.  But twenty years down the road perhaps I will be able to establish this.  

For now, let me just say that formalism, albeit pure formalism is the spinal chord 
of modern logic.  So both Boole and Frege are the founders of modern logic.  If a choice 
has to be made of course pure formalism and formal systems will be the domain of 
mathematics rather than of philosophy.  Philosophers like VonWright and Hintikka 
nonetheless have made use of this formalism in the heart of philosophy in epistemology 
and ethics.  Again I would claim that in their formalising of philosophy contemporary 
logicians are just as indebted to Plato, Leibniz and Kant as they are to Modern 

1 I came upon the reference in Wolfgang Lenzen, ‘Leibniz’s Logic’ (Gabbay and Woods, 2004, 7).
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mathematics.  Leibniz puts it best: ‘Pure mathematics proves nothing against logic.  For it 
has borrowed much from logic, and  it also comes to the rescue of logic.’ (1696, 470)
 Modern logic may be characterised by the following essential characteristics:

a. variables, quantifiers, relations, functions;
b. axiomatisation;
c. truth functionality of logical connectives;
d. propositional calculus and predicate calculus—first order logic—set  theory, 

second order logic;
e. formal semantics and metalogic: consistency, completeness and 

incompleteness;
f. development of modal logic, deontic logic and epistemic logic;
g. deviant logics: multivalued logic, fuzzy logic, quantum logic, paraconsistent 

logic.
                                                       
I will now backtrack to the origins of logic in order to trace how these features emerged.  
I will be more concerned with (a) through (e) which can generally  be characterised as the 
mathematisation of logic.  It is also apparent to me that these five dimension are not 
explicitly combined to form formal symbolic logic until the mid or late Nineteenth 
century.  So that is when modern logic emerges.  We must hence examine why and how 
this emerged.  It also seems apparent that that more than the contribution of philosophers, 
the emergence of modern logic was waiting for the active involvement of 
mathematicians.  Kneale and Kneale (1962) make this point  poignantly  in their classic 
The Development of Logic:

Although Leibniz had put forward a number of brilliant suggestions, it was not possible 
to make sure progress until mathematics had developed so far that the sort of abstraction 
he desired seemed natural and easy.  When logic was revived in the middle of the 
nineteenth century, the new vigour came from mathematicians who were familiar with 
the progress of their own speciality, rather than from philosophers who were occupied 
with the controversies of idealism and empiricism. (p. 378)

So, as the golden age of mathematics was on in the eighteenth century mathematicians 
were too busy with developing the various branches of mathematics such as analysis, 
group theory, theory of functions and topology; and did not take time out to think about 
logic.  When they did find time modern logic as mathematical logic emerged.  Peckhaus 
describes this emergence as follows:

Most nineteenth-century scholars would have agreed to the opinion that philosophers are 
responsible for research on logic.  On the other hand, the history of late nineteenth-
century logic clearly indicates a very dynamic development instigated not by 
philosophers but by mathematicians.  A central outcome of this development was the 
emergence of what has been called the “new logic,” “mathematical logic,” “symbolic 
logic,” or from 1904 on, “logistics.” (Peckhaus 2004, 159)

What follows in the rest of my presentation is a merely unfolding of this paragraph.
 I end the introduction with one note of caution on the word ‘emergence’.  I do not 
mean ‘emergence’ in any mystical sense or in a sense often used by some philosophers 
where at some point in time some phenomenon Y emerges out of X and is irreducible to 
X.  I think the history of any discipline is much more democratic than it is often made out 
to be.  When one properly studies the history one realises that it  was not just George 
Boole (1815–1864) and Gottlob Frege (1848–1925) who invented modern logic but there 
were scores of mathematicians and philosophers such as Bernard Bolzano (1781–1848), 
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William Hamilton (1788–1856), Charles Babbage (1791–1871), George Peacock (1791–
1858), John Herschel (1792–1871), Augustus De Morgan (1806–1871), Alexander Bain 
(1818–1903), Duncan F. Gregory (1813–1844), Richard Dedekind (1831–1916), Charles 
Dodgson (1832–1898), William Stanley Jevons (1835–1882), Charles Saunders Peirce 
(1839–1914), Ernest Schröder (1841–1902), George Cantor (1845–1918), Giuseppi 
Peano (1858–1932, David Hilbert  (1862–1943), and many others; who contributed to the 
invention of modern logic.  Furthermore, the word ‘emergence’ is vague as we cannot 
pinpoint exactly when modern logic emerges.  It surely did not emerge at the time of 
Leibniz or even Kant and it had surely emerged by  the time of Russell and Whitehead’s 
Principia Mathematica, the centenary of the publication of which is being celebrated this 
year.  The emergence then took place somewhere in the fifty year span from the 1830s to 
the 1880s.   

2. Origins of Formal Logic
 
Let us now briefly go back to the beginning.  The word ‘logic’ is derived from the Greek 
‘logos’.  ‘Logos’ means sentence or discourse.  Broadly  speaking logic then is the study 
of sentences or discourses.  However, such a definition of logic would definitely be too 
broad as it covers grammar, semantics, pragmatics and linguistics.  Though all of these 
may be related to logic they can be included in the philosophy of logic but not in logic 
proper.  The more precise and generally  accepted definition of ‘logic’ is that it is a science 
of inferences amongst sentences (or statements or judgments or propositions).  It is the 
science of how certain sentences are derived from certain other sentences and what 
makes an inference valid.

2.1 Origins of deduction
Among the Prescocratic philosophers we can distinguish three types of reasoning: 

demonstrations, dialectic and rhetoric.  
Demonstrations can be seen in Thales (624–546 BCE) and Pythagoras (570–495 

BCE) in their proofs of geometry and the birth of deduction.  In a demonstration true 
conclusions are derived from true postulates with the aid only of primitive definitions and 
basic rules of inference.  There is some controversy as to whether Thales and Pythagoras 
really came up with deductive proofs that could be called ‘rigorous’:

In Thales the proofs of the theorems are either not given at all or are given without the 
rigor demanded in later times. […] Pythagoras […] concerning the right-angled triangle 
[…] knew in the case of the triangle with sides 3,  4, and 5, without giving a rigorous 
proof.  Euclid’s is the earliest of the extant proofs of this theorem.  […] The Pythagorians 
proved that the sum of the angles of a plain triangle is two aright angles.  (Fink 1900,  
194–5)

Rather than produce some fragments of proofs of Thales and Pythagoras whose 
authenticity  may be questionable let us take the hint from Fink and look at a proof 
presented in the elements which surely  must have come from earlier times.  This is the 
proof of the famous proposition 32:
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In any triangle, if one of the sides be produced, the exterior angle is equal to the two 
interior and opposite angles, and the three interior angles of the triangle are equal to two 
right angles. 

 Let ABC be a triangle, and let one side of it BC be produced to D;
 I say that the exterior angle ACD is equal to the two interior and opposite angles CAB,  
ABC, and the three interior angles of the triangle ABC, BCA, CAB, are equal to two right angles.
 For let CE be drawn through the point C parallel to the straight line AB.           [I.31]

 Then,  since AB is parallel to CE, and AC  has fallen upon them, the alternate angle BAC,  
ACE are equal to one another.     [I.29]
 Again, since AB is parallel to CE, and the straight line BD has fallen upon them, the 
exterior angle ECD is equal to the interior and opposite angle ABC. [I.29]
 But the angle ACB was also proved equal to the angle BAC;
  therefore the whole angle ACD is equal to the two interior and opposite angles 
BAC, ABC.
 Let the angle ACB be added to each;
  therefore the angles ACD, ACB are equal to the three angles ABC, BCA, CAB.
 But the angles ACD, ACB are equal to two right angles.  [I.13]  
  therefore the angles ABC, BCA, CAB are also equal to two right angles.
  Therefore etc.

          Q.E.D.
 (Euclid, 316–7)
 After the mathematical demonstrations came Zeno’s (490–420 BCE) famous 
dialectical arguments in the form of reductio ad impossible.  These were also deductive.  
They  differed from demonstrations in that whereas in demonstrations we begin with the 
premises and derive the conclusion deductively; in dialectic arguments we begin by 
assuming that  a premise is true and derive a conclusion from them.  More specifically in 
dialectic arguments as crafted by the Eleatic Parmenides (520–450 BCE), we first assume 
that p is true and derive a contradiction that follows from it, then we assume that ~p is 
true and derive a contradiction from it.  
 Here is an example of one of Zeno’s paradoxes using a reductio ad impossible 
argument reconstructed by Aristotle.  In which the assumption to be refuted is that (0) 
what is moving is at  least at some moments not at rest.  The argument then derives a 
contradiction:

(1) Anything occupying a place just its own size is at rest.
(2) In the present, what is moving occupies a place just its own size.

       So,   (3)  in the present, what is moving is at rest.
       Now (4)  what is moving always moves in the present.
       So    (5)  what is moving is always—throughout its movement—at rest. (Kirk et al. 1984, 273)
(0) and (5) form an explicit contradiction.

In Zeno’s actual arguments as in the above one usually one side is done.  He may 
assume (p) that an object moves from point s1 to s2 and derive a contradiction from it, so 
that p is not true.  He usually does not assume (~p) that an object does not move from one 
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point s1 to s2 and derive a contradiction from that.  He need not do that once it is observed 
that an object moves from point s1 to s2 it is clearly false to say  that the object does not 
mover from s1 to s2.  This is why this is called a Zeno’s paradox. An object o1 obviously 
moves from point s1 to s2, but if you assume that it  does then it leads to a contradiction.  
When the contradiction derived from an assumption p is an explicit contradiction of the 
form q∧~q then ~p is proven to be true by reductio ad impossible.  Later, in Plato we see 
reductio ad absurdum arguments in which from an assumption p any false proposition is 
derived (which is not necessarily a contradiction), so ~p is proved to be true.  Reductio ad 
impossible arguments are a proper subclass of reductio ad absurdum arguments.  Both are 
deductive, but some mathematicians have often been suspicious of reductio ad absurdum 
arguments that are not reductio ad impossible.  However, if deduction in mathematics has 
the characteristics of demonstrations discussed above then all reductio ad absurdum 
arguments must be accepted as valid deductive arguments.  That is because once a false 
proposition is derived in a demonstration then the starting point was not a true 
proposition.  But then it was not a demonstration.  Hence, mathematicians should not 
accept any  reductio arguments of any time.  Yet, reductio arguments are used even in 
Euclid’s Elements:  

Proposition I.4 states:
If two triangles have the two sides equal to two sides respectively, and have the angles 
contained by the equal straight lies equal,  they all also have the base equal to the base, 
the triangles will be equal to the triangle, and the remaining angles will be equal to the 
remaining angles respectively, namely those which the equal sides subtend.
Proof:

  
In the middle of the proof we have:

hence the base BC will coincide with the base EF.
 [For if,  when B coincides with E and C with F,  the base BC does not coincide 
with the base EF, two straight lines will enclose a space: which is impossible.
  Therefore the base BC will coincide with EF] and will be equal to 
it.        [c.n. 4] (Ibid., 248) 

Technically, there does not seem to be an explicit contradiction here, but the explicit 
contradiction can be brought out with a hidden assumption.  Euclid’s definition 4 states: 
‘A straight line is a line which lies evenly with the points on itself’ (Ibid., 153).  Hence, if 
B coincides with E and C coincides with F, then BC and EF are the same line and cannot 
enclose a space.  So, if we label ‘two straight  lines will enclose a space’ as q, then ~q is 
‘two straight lines do not enclose a space’ and we can get the desired contradiction q∧~q.  
 Perhaps we have to give up the claim that all mathematical arguments are pure 
demonstrations.  In any case in the Presocratics we find two types of deductive reasoning: 
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demonstrations which are solely mathematical and dialectical arguments which seem to 
be the nerve of philosophy.  The Sophists raised scepticism against dialectical arguments 
perhaps because they seemed to lack the certainty of demonstrations.  Instead, they 
promoted rhetoric as the art  of convincing others of the truth of your claims through 
means that  we may call ‘fallacious reasoning’.  Rhetoric may or may not be a form of 
reasoning, but it is definitely not deductive.  Hence, from early on we can restrict the use 
of ‘logic’ as that pertaining only to deductive inferences hence rhetoric does not  have a 
logic, whereas mathematics as demonstrations and philosophy as dialectical arguments do 
have a logic as they are both employing purely deductive reasoning.  In order to avoid 
another type of scepticism I will define dialectic arguments as simply those arguments in 
which a conclusion is derived by  assuming that the premises are true.  To use a distinction 
we often make in the first few classes of elementary logic, correct philosophical dialectic 
arguments must be valid whereas correct mathematical demonstrations must be sound.
 Aristotle of course was well aware of these two types of deduction and the logic 
that he formalised, namely syllogistic logic was common to both.  Aristotle had an 
encyclopaedic mind and wore many hats.  But at heart he was a scientist and being a 
scientist he saw more value in demonstrations which were mathematical than in dialectic 
arguments that  were metaphysical.  This preference for mathematics is also the reason for 
why he formally  developed what would be close to modern predicate calculus and set 
theory  without first developing a propositional calculus.  Also being a scientist he was 
more concerned with general propositions than with particular propositions.  Hence, his 
valid syllogisms were all given in terms of general propositions.  Though his intentions 
were noble, the failure to develop  a propositional calculus at that time impeded the 
progress of logic for centuries to come.  But Aristotle is hardly to blame for this failure as 
he was not omniscient and he did not know what he needed to know in order to develop  a 
propositional calculus as we shall see later.  

Let me at this juncture let the cat out of the bag.  It seems that the axiomatisation 
of arithmetic was necessary for the axiomatisation of propositional calculus, which in 
turn was necessary for the axiomatisation of predicate calculus; hence even though 
Aristotle comes close to the axiomatisation of predicate calculus he fails to accomplish 
the task.  I can probably  end my lecture at this point as I have pinpointed the reason for 
why modern logic emerged when it  did.  However, I will argue that as important as this 
reason may be, it is not the only reason, and further suggest that perhaps there are other 
important features of modern logic such as proofs of consistency  and completeness which 
are equally essential and which are not an automatic consequence of the axiomatisation 
of logic.  I could argue further, though I will not  do that here, that even without the 
axiomatisation of propositional and predicate calculus, a logic with all the other features 
could be developed as a natural deduction system; though it  would be extremely 
inconvenient and cumbersome.     

2.2 Propositions
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Though I will avoid a discussion of philosophy of logic, something must be said 
about what inferences hold between.  Do they hold between sentences, or statements or 
propositions?  In modern logic an inference may be expressed as follows:

Theorem 7.7 (Completeness) For every φ ∍ LK

   ╞ φ implies ├ φ (van Ditmarsch et al., 181).
What do the symbols ‘φ’ and ‘LK’ stand for?  To answer this question we must enter a 
study of language.  I quote none other than George Boole from The Mathematical 
Analysis of Logic:

That which renders Logic possible, is the existence in our minds of general 
notions,—our ability to conceive of a class,  and to designate its individual members by a 
common name.   The theory of Logic is thus intimately connected with that of Language.  
A successful attempt to express logical propositions by symbols, the laws of whose 
combinations should be founded upon the laws of the mental processes which they 
represent,  would, so far, be a step toward a philosophical language.  But this is a view 
which we need not here follow into detail.  (Boole 1847, 4–5)
  One of the aspects that was not clear to Aristotle was the distinction between a 

sentence and a proposition.  The Megarians who were contemporaries of Aristotle did 
have a clearer theory of meaning in which sentences referred to propositions.  Aristotle 
did however a clearer conception of the truth values ‘true’ and ‘false’ as he states: ‘To say 
of what is that it is not, or of what is not that  it is, is false, while to say of what is that it 
is, and of what is not that it  is not, is true;’ (Metaphysics 1011b 26–28); though he was 
not clear about whether the truth bearers were sentences, statements or propositions; but 
it surely was not facts as seen by the quotation.  Facts are rather the truth makers.  The 
Stoics following the Megarians sharpened the theory of meaning and came very  close to 
claiming that propositions were thoughts which were the references of sentences and it 
was propositions which were true and false and not sentences.  However, they  could not 
come up with Frege’s insight that ‘true’ and ‘false’ were referents of sentences.  A theory 
of meaning however may only be a minor part of the development of propositional 
calculus.

2.3 Use of variables in syllogistic logic
Aristotle’s syllogism first appears in Chapter 4, Book I of the Prior Analytics: ‘If 

A is predicated of every B, and B of every C, A must  be predicated of every C.’ (26b 1–2) 
This is the famous ‘Barbara’, that is, valid syllogism in the AAA in the first figure and 
usually depicted as:

All M are P.
All S are M.

Therefore,  All S are P.
In using variables, which he did not use in earlier works like De Interpretatione, Aristotle 
realised the first essential feature of modern logic.  However, the sharpness in the use of 
letters for variables was brought in by modern mathematicians.  Here is an example:

I then laid down the rules for the selection of letters. […]
1. All upright letters, as a, c, d, e, A, B, represent framing.
2. All inclined letters, as a, c, d, e, A, B, represent moveable parts. 
3. All small letters represent working points. (Babbage, 143)  

In Aristotle’s logic we need to distinguish between capital letters when used for terms and 
when used for the categorical statements.  So to honour this great man Charles Babbage 
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without whose contribution I surely would not be typing this on the computer, I will use 
capital letters in italics as variables for terms and I will use capital letters ‘A’, ‘E’, ‘I’ and 
‘O’ in normal font as names of the four types of categorical statements.

We must also note that in Aristotle’s original formulation the syllogism would be 
better interpreted set theoretically, but of course this was not available to Aristotle.  
Aristotle realised that  in order to decide which forms of syllogisms were valid all the 
possible forms will have to be tested (which are 256 in the revised Aristotelian system).  
This task would become cumbersome, tedious and practically close to impossible if 
variables were not used.  More importantly, he realised that variables were necessary to 
capture the universality of syllogism.  Consider the following syllogism:

All primates are mammals.
All humans are mammals.

Therefore,  All humans are primates.
This is the syllogism in the mood AAA in figure 2.  I hope that we can all see that  this is 
invalid.  Yet, in the example of the syllogism given here the premises as well as the 
conclusion are true, but the conclusion does not follow from the premises.  How do we 
demonstrate the invalidity?  This can be done by refutation by logical analogy:

All primates are mammals.
All cows are mammals.

Therefore,  All cows are primates.
So, we have a counterexample as the premises are true and the conclusion is false.  In the 
minor premise I have changed the subject term from ‘humans’ to ‘cows’.  In order to 
make this substitution I must first abstract from ‘humans’ to ‘S’ where S is any term, and 
then I substitute for ‘S’ cows.  Furthermore, the form of each mood in each figure is more 
clearly understood when stated with variables:

All P is M.
All S is M.

Therefore,  All S is M.
In fact when I wrote down the example and counterexamples I used this formula with 
variables of the syllogism in the second figure in the mood AAA in order to make my 
concrete construction.  This shows the primacy of the abstract over the concrete in logic.  
It may seem that I am labouring a rather trivial point here, but in a way the move towards 
greater and greater formalisation is a move towards higher levels of abstraction.  This is 
the point made by Kneale and Kneale throughout Chapter VI entitled ‘Mathematical 
Abstraction’ which along with Chapter VII presents the core of the emergence of modern 
logic:

When one proposition follows logically from another, it should be possible to formulate 
the two propositions in such a way that their relation can be seen to depend on their form 
alone, that is to say, on their logical structure as opposed to their special subject-matter.  
(Kneale and Kneale 1962, 384)

The point I am labouring here is that this ‘form alone’ is seen more clearly when we use 
variables instead of concrete terms.  It  will of course be possible to do Aristotelian formal 
logic without the use of variables but it will be highly inconvenient.  However, when we 
get to modern logic it  will become impossible to do symbolic logic without variables, 
quantifiers and functions.  Hence, there is a quantum leap from the convenience of 
variables in Aristotelian syllogistic logic to the necessity of variables in modern logic.   
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The defenders of Aristotle might ague that even in Aristotelian logic, the use of variables 
was indispensable.  However, this point cannot be established convincingly, especially 
due to the hindsight we have now.  Arithmetic was around at the time of Aristotle and all 
through the reign of classical logic.  During this period algebra also emerged, but it took 
reflections on the formal character of algebra by mathematicians like George Peacock 
(1830) to set the ground for the algebrisation of logic, rather than the arithmetisation of 
logic, which was the key to the emergence of modern logic: 

[…] the fundamental operations of Algebra are altogether symbolical, and we might 
proceed to deduce symbolical results and equivalent forms by means of them without any 
regard to the principles of any other science; and it would merely require the introduction 
of some such sign as = in the place of the words algebraic result of, or, algebraically 
equivalent to, to connect the results obtained with the symbolic representation of the 
operations which produce them, in order to supersede altogether the use of ordinary 
language. (Peacock 1830, xi)

Algebra then is closer to the purely formal discipline that  modern logic is likely the 
offspring of than arithmetic is.  We begin then to find a dent in the supposed intimate 
connection between arithmetic and logic.

2.4 Limitations of syllogistic logic
Aristotle considers the four moods in the first figure AAA, AII, EAE and EIO to be 

the basic forms of valid syllogisms and other valid syllogisms may be reducible to these 
forms.  There were further attempts in Aristotelian logic to reduce all syllogisms to AAA 
in the first figure.  This clearly indicates that Aristotle had a notion of axiomatics.  
Furthermore, his repeated emphases on first principles in other writings also points to 
axioms.  Aristotle was also quite aware that geometry could be axiomatised even though 
Euclid’s Elements had not  yet appeared.  Even though Aristotle could clearly see the 
possibility of axiomatisation of syllogistic logic, he failed to present his logic in an 
axiomatic system.  Even after the availability of Euclid’s Elements for centuries classical 
logic failed to be axiomatised.  This failure was due to the limitations of Aristotelian 
logic.  Even though Aristotle‘s three laws of logic are universal laws of thought, his 
syllogistic logic falls short of global application.  

The first limitation is the restriction of the form of all syllogisms to two premises, 
major and minor and the conclusion.  Let us take a look at the proof of Euclid’s famous 
proposition 32 above.  How can this proof be reduced to syllogistic logic?  Even if this 
were possible it would be a practical nightmare to achieve it.  One way  would be to go 
part by part of the proof and put it in syllogistic form.  This would end up with this as the 
final syllogism where the major premise and the minor premise themselves would already 
have been established through valid syllogisms:  

All triangles in which line BC can be produced to D are triangles of the type ABC . 
All triangles in which the exterior angle ACD is equal to the two interior and opposite angles CAB, 
ABC, and the three interior angles of the triangle ABC, BCA, CAB, are equal to two right angles are 
triangles in which BC can be produced to D.
Therefore, All triangles of type ABC are triangles in which angle ACD is equal to the two interior and 
opposite angles CAB,  ABC, and the three interior angles of the triangle ABC, BCA, CAB, are equal to 
two right angles.

The second limitation is that only subject–predicate propositions can be used in 
syllogistic logic.  In reducing it is difficult to represent part of the proof into a syllogism 
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when the sub proof involves a relation.  Furthermore, the recursive complete proof of 
proposition 32 requires all five of Euclid’s axioms.  How are the axioms to be captured 
syllogistically? The task becomes difficult because the first  three postulates of Euclid are 
constructions and not propositions:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines makes the interior angles of the 

same side less than two right angles, the two straight lines, if produced indefinitely, 
meet on that side on which are the angles less than two right angles. (Euclid, pp. 
154–5)

Here is an attempt to syllogise Euclid’s first postulate:
All pairs of points are points between which a line q1q2 can be 
constructed.

  All points (q1, q2) are pairs of points.
Therefore,  All points (q1, q2) are pairs of points are points between which a line 

q1q2 can be constructed.
Even though we have represented the first postulate as AAA in the first figure, the 
formulation is questionable because the middle term seems to be identical to the subject 
term.  Though this is not technically incorrect usually in Aristotelian logic all three of the 
major term, minor term and middle terms must be distinct.  However in Saccheri’s 
profound reductio argument against the validity  of AEE in the first figure we find a 
similar identification of the subject term with the middle term:

Every syllogism with a universal major and an affirmative minor 
premises yields a conclusion in the first figure.
But no syllogism of the pattern AEE has a universal major and an 
affirmative minor premiss.

Therefore,  No syllogism of the pattern AEE yields a conclusion in the first figure. 
(Kneale and Kneale 1962, 346)

The identity of the subject term and middle term here may not be explicit, but by 
definition AEE does not have a universal major and affirmative minor premise, rather it  is 
composed of a universal affirmative major and a universal negative premise.  Hence, it 
immediately reduces to an identity.  It is interesting to note that this reductio does not 
look like Zeno’s reductio arguments where we begin with the negation of what we want 
to prove as the assumption.  However, this argument itself is in the mood AEE in the first 
figure.  So, the reductio does indeed begin with the assumption that AEE in the first 
figure is a valid argument form.  However, if it is valid then as the conclusion here states 
it is not valid.  Hence, we have the explicit contradiction that  a reductio ad impossible 
argument requires.  
 A third limitation as mentioned earlier is that syllogistic logic is not built  on a 
propositional calculus and proofs like that of Proposition 32 when represented purely 
logically employ  propositional calculus.  Aristotle was inspired by mathematical 
demonstrations rather than by dialectical arguments in developing syllogistic logic as he 
clearly  states when he first introduces syllogisms: ‘After these distinctions we now state 
by what means, when, and how every  deduction is produced; subsequently  we must 
speak of demonstration.  (my emphasis) (Prior Analytics, 25b 26–7).  It  is hence ironic 
that he failed to capture geometrical demonstrations in syllogistic logic.  Despite being an 
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expert in almost every  discipline Aristotle was not a mathematician and this also explains 
his failure to axiomatise logic.  However, if we are to accept this as the reason, then we 
may wonder why  in the next two thousand years mathematicians like Descartes, Pascal 
and Leibniz could not axiomatise logic.  The better explanation is that despite this long 
standing axiomatisation of geometry it took the developments of mathematics in the 
eighteenth and nineteenth centuries for the axiomatisation of arithmetic to emerge.  And 
the axiomatisation of arithmetic and set theory coincides with the axiomatisation of logic.  
This supports the logicist thesis that arithmetic is reducible to logic.  Again, I could stop 
my lecture here as I have given the essential reason why modern logic emerged when it 
did.  But I request you to be patient because after repeating this point a few times I may 
end up challenging the legitimacy of it.

2.5 Failure of classical logic to capture truth functionality of logical connectives
 The Megarians explicitly realised the truth functionality of compound statements 
involving the connectives conjunction, disjunction and conditional as Philo (4th century 
BCE) states: ‘a sound conditional is one that does not begin with a truth and end with a 
falsehood, e.g. when it is a day and I am conversing the statement “if it is day I am 
conversing”. (Kneale and Kneale, 128)  I have purposefully picked the conditional as an 
example because all throughout the history  of logic the conditional has somehow been 
tied with implication and inference, so that the truth functional representation of what in 
modern logic is called the ‘material conditional’ is rightly motivated as the only  case that 
is definitely false is when the antecedent is true and the consequent is false which is 
related to the conclusion of an argument must be true if the premises are true.  However, 
from the Megarians to the Stoics through medieval philosophy all the way up to and into 
Modern philosophy  the truth functionality  of logical connectives could not be formalised.  
It could not be formalised until logic was algebrised and this algebrisation of logic 
depended on the development of algebra itself to the level of an abstraction in which it 
was no longer restricted to quantity alone.  This development was made by George 
Peacock (1830) and Duncan Gregory (1840), which further led to Boole’s development 
of algebra.  Simply put it was the algebra of operations and particularly of the binary 
operations of multiplication and addition that  could be used to represent the logical 
connectives of conjunction and disjunction.  Boole provided all the possibilities on which 
truth tables for logical connectives could be built and Frege rode piggy back on this to 
actually lay down the truth tables; hence grounding truth functionality  formally  as 
required for the development of modern logic.
      
.6 Failure of classical logic to develop a propositional and predicate calculus, set       

theory and second order logic
 The above sections make it  clear that the lack of a clear distinction between 
sentences and propositions, the limitation of subject–predicate propositions to capture 
relational propositions, a lack of a formal development of truth functional connectives 
were the factors because of which propositional calculus could not be developed in 
Aristotelian logic.  Even though Aristotle’s syllogistic logic is predicate logic it does not 
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provide a predicate calculus.  First, a predicate calculus presupposes a sentential calculus 
which was not available to classical logic.  Second, the use of quantifier symbols (∃x) 
and (∀x) was not available until after Hamilton and De Morgan developed earlier 
notations and Frege developed the notation that we use today.  How can a lack of notation 
account for the failure of the emergence of predicate calculus?  Without these 
symbolisations certain implications that hold in Aristotelian logic were simply mistaken.  
An A proposition implies and I proposition in classical logic.  So, ‘all unicorns are one-
horned’ implies that ‘some unicorns are one-horned’.  However, ‘all unicorns hare one-
horned’ is true whereas ‘some unicorns are one-horned’ is false because there are no 
unicorns.  To avoid this Aristotle was led to say  that  ‘all unicorns are one-horned’ is false 
because ‘all A are B’ cannot be true unless there exists at least one A.  If the quantifier 
notations were available, perhaps Aristotle would have realised his error.  Similarly, the 
proposition ‘no humans are insects’ is true now but it would not have been true three 
million years ago since no humans existed, whereas in modern logic this statement  would 
always be true whether or not humans existed.
 Classical logic could also have been developed as a logic of classes but as we 
have seen above Aristotle and his followers for two millennia did not have the 
mechanism to develop set theory.  Even though the notion of classes, membership, 
inclusion, union and intersection were there, the symbols ‘{x1, x2,…}’, ‘∈’, ‘⊂’, ‘∪’, ‘∩’ 
were missing.  Additionally, the lack of axioms made it impossible for set theory to be 
developed.  Even if propositional logic, predicate calculus and set  theory  could have been 
developed within Aristotelian logic there would have been no realisation that all of this 
was first order logic as there is not indication that there was any realisation that there 
could be a second order and higher orders of formal logic as this is solely  a realisation of 
modern logic.

 

.7 Failure of classical logic to develop a formal modal logic
Aristotle and classical logic since Aristotle did develop modal logic to some 

extent.  Aristotle clearly specified modal syllogisms.  Three were however three types of 
confusions.  First, the confusion of what the meaning of ‘necessary’ was.  Second, the 
confusion of whether the ‘necessary’ and ‘possible’ operated on propositions or on 
predicates.  Even if this confusion can be cleared up what Aristotle and logicians all the 
way up to the twentieth century did not have available to them were the symbols ‘’ and 
‘’ for necessary and possible respectively.  Again, one may wonder how an appropriate 
notation can lead to the development of logic.  But this is exactly  what has happened.  In 
system S4 of modal logic the additional axiom to system T is p → p.  p is really 
(p).  that means that the first   is the necessity operator on the proposition which 
itself is a proposition with a necessary  operator.  Without the notation this literal 
translation of ‘p’ as ‘necessary necessary p’ which is a proposition is obscure or 
meaningless.  It can better be stated as ‘necessary  p is necessarily  true’.  Somehow this 
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still does not capture the meaning that  ‘p’ does.  Now, if one is suspicious of the truth 
of the axiom one need only substitute the first ‘’ by  its definition ‘~~’.  The axiom 
now becomes ‘p → ~~p’ which perhaps now seems obvious.  In English this 
translates as ‘if p is necessarily true then it is not possible that p is not necessarily true’ 
whereas the original axiom reads as: ‘if p is necessarily  true then it is necessary that  p is 
necessarily true.’  Even though the second form of the axiom does not become more 
obvious than the first form until we translate it into English, my point is that using 
language alone and without the notations for modal operators this axiom could not have 
been realised.  Whether or not one agrees with me here it  seems that history  is witness to 
my assessment as this axiom was not realised until the twentieth century.

The development of modal logic is antecedent to the development of deontic and 
epistemic logics.  Since ethics and epistemology have been at  the core of philosophy ever 
since Plato, surely philosophers would have lived to have developed deontic and 
epistemic logics, but since they  did not have a developed modal logic they could not have 
had a developed deontic and epistemic logic.

.8 Failure of classical logic to develop a metalogic
Aristotle’s reflective discussions on the syllogism and his determination of the 

valid forms as the only valid forms were traces of proving consistency and completeness.  
However, there is not even an inkling of the formal development of this in Aristotle and 
hardly  any  progress is made towards this until the end of the nineteenth century and it is 
completely realised only by the Hilbert program.

The liar’s paradox is indeed the generator of Gödel’s incompleteness theorem.  
The liar’s paradox is first attributed to Eubulides (4th Century BCE), a Megarian who was 
a contemporary of Aristotle.  Even though there were many attempted solutions to this 
paradox no solution was satisfactory and no one ever had the insight that the 
incompleteness of a formal system could be demonstrated with the formal system.  Why 
could this not be done?   Gödel’s incompleteness requires three steps: the first is to 
formally prove the soundness, consistency and completeness of the formal system.  
Soundness means that  every theorem of L is a tautology, consistency is established when 
it is proven that if α is a thesis of L then ~α is not a thesis and vice versa, and 
completeness is when every  tautology of L is a theorem of L.  The second step is to 
formulate the incompleteness theorem with the formal system, which basically  says that 
there is a tautology in L that is not a theorem of L, that it cannot be proven in L.  The 
third step is the proof which establishes that if L is consistent then it is incomplete.  None 
of the three steps were available in Aristotelian logic.  This is also the reason why within 
the limitation of Aristotelian logic the liar’s paradox could not be solved.  It could not be 
solved because it could not be formally represented.

.9 Failure of classical logic to develop deviant logics
Again, there are probably  traces of multivalued logics, fuzzy logic and paraconsistent 
logic (in Heraclitus and Hegel) but again not even a grain of a formalised account of 
these logics had been developed.
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3. The Roots of Modern Logic in Leibniz

What follows in sections 3.1 through 3.5 is an unfolding of Couturat’s quotation from 
section 1 above where he claimed that  Leibniz had somewhat developed all the essential 
features of modern logic and in some ways he went beyond Boole.

3.1 The universal calculus
Leibniz was well aware of the limitations of classical logic.  He hence began the 
construction of a universal calculus that would be wider and more comprehensive basis 
for logic than what we have in classical logic.  Leibniz had in mind a formal calculus that 
would be the basis not only of mathematics but of philosophy as well: 

If this is done, whenever controversies arise, there will be no more need for 
arguing among two philosophers than among two mathematicians.  For it  will 
suffice to take the pens into the hand and to sit down by the abacus, saying to 
each other: Let us calculate. (Leibniz, translated by Lenzen 2004, 1)

The universality of this calculus is stressed repeatedly by Leibniz:
Once our men carry the method through to the end, therefore, they will always 
philosophise in the manner of Boyle, except  in so far as nature itself, to the 
degree to which it is known and can be subjected to the calculus and to the 
degree that  new qualities are discovered and reduced to this mechanism, will also 
give to geometricians new material to which to apply it.  (1675, 166)

I have suggested elsewhere that there is a calculus more important than those of 
arithmetic and geometry which depends on the analysis of ideas.  This would be a 
universal characteristic, and its formation seems to me one of the most important 
things that can be undertaken. (1702, 585)

[…] I should still hope to create a universal symbolistic [spécieuse générale] in 
which all truths of reason would be reduced to a kind of calculus.  At  the same 
time this could be a kind of universal language or writing, though infinitely 
different  from all such languages that  have thus far been proposed, for the 
characters and the words themselves would give direction to reason, and the 
errors—except those of fact—would be only mistakes in calculation (1714–15, 
654)

Had Leibniz anticipated the computational theory of mind?
 We began with the distinction between two types of deduction: demonstrations 
and dialectical arguments.  Whereas Aristotle wanted to consider both on par as both 
involved syllogistic reasoning, even though he gave preference to mathematical 
demonstrations; Leibniz on the other hand claims that: ‘Perfect demonstrations are 
possible in all disciplines’ (1666, 74) Hence, all pure reasoning can be reduced to 
demonstrations and that is the guiding light for his universal calculus.

3.2 Logic is purely formal
For Leibniz logic was a purely formal discipline.  Furthermore, the rigour of all 

the sciences is derived from the formalism that is incorporated into it.  So, even though 
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each science has its autonomy according to its domain, the rigour of it is derived from the 
formal system that the discipline imports.  Leibniz’s inspiration for logic being purely 
formal was surely not from Descartes but from Hobbes:

[…] if reasoning chance to be nothing more than the uniting and stringing 
together of names or designations by the word ‘is’?  It will be a consequence of 
this that  reason gives us no conclusion about  the nature of things, but  only about 
the terms that  designate them, […] according to which we join these names 
together. (from Kneale and Kneale 1962, 311)

The purely formal character of logic outlined by  Hobbes is that logic is not about terms 
and not about the objects designated by the terms and that it is a purely  formal discipline 
about the combinations of terms which are formally  defined.  Inspired by Hobbes Leibniz 
also thought that symbols could be introduced through definitions, though he allowed for 
real as well as nominal definitions whereas for Hobbes all definitions were nominal and 
arbitrary.  And once the symbols are introduced they could be subjected to combinatory 
analysis, and such combinatory analysis was the basis of Leibniz’s universal calculus of 
logic:

Algebra […] is only a part  of this general device […] {in} algebra truth can be 
grasped as if pictured on paper with the aid of a machine.  […] {whatever} 
algebra proves is due to a higher science […] combinatorial characteristic […] 
nothing more effective can well be conceived for perfecting the human mind and 
if this basis for philosophising is accepted, there will come a time, […] when we 
shall have certain knowledge of God and the mind as we now have of figures and 
numbers and when the invention of machines will be no more difficult than the 
construction of geometric problems. (1675, 166)   

Here, Leibniz does not only anticipate the coming of the algebra of logic but also how it 
will come about.  The first step, as we will soon see, in the emergence of the algebra of 
logic is a transformation in algebra in which algebra is broadened so that it is no longer 
restricted to quantities, but is rather qualitative, under which the traditional algebra of 
quantities is subsumed.  The ‘combinatorial characteristic then is the purely  formal logic 
that Leibniz wishes to construct.  There is a dialectic relation between algebra and logic 
here.  It is through algebra, and especially its characteristic of grasping truth that the 
universal calculus of logic is first realised but once discovered this logic is a more 
generalised algebra on which algebra itself is founded.  In philosophy we have an easy 
way of dissolving this apparent paradox.  We can simply  say that whereas logic has the 
ontological primacy over mathematics and particularly algebra, algebra has an 
epistemological primacy over logic.  For our purposes it would be better to say that 
algebra, particularly modern abstract algebra is historically prior to modern symbolic 
logic. 
 Leibniz clearly anticipated that an algebra that was qualitative and quantitative 
could be realised:

But  this art  can be and ought  to be used not only when our concern is with 
formulas which express magnitudes, and with the solution of equations, but  also 
when the involved key is to be developed for other formulas which have nothing 
in common with magnitude.  The art of finding progressions and of establishing 
tales of formulas is also purely combinatorial, for these have a place not only in 
formulas expressing magnitude but  in all others as well.  For formulas can also 
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be derived from them which express situation [situs] and the construction of lines 
and angles without  considering magnitude.  More elegant constructions can be 
discovered by this method, and more easily, than through the computing of 
magnitudes.  With the help of combinatorial theorems […] it  can be proved far 
more naturally than Euclid has done that  the sides of triangles having equal 
angles are proportional. (1678, 193)

This passage also clearly states the logicist thesis that would be characteristic of at least 
one group of modern logicians, mainly philosophers like Frege and Russell, but also of 
mathematicians like Couturat.  
 Here is another account of algebra of logic as the art of combinations:

[…] the whole of algebra is an application to quantities of the art of 
combinations, or of the science of abstract  forms, which is the universal 
characteristic and belongs to metaphysics.  So the product of the multiplication of 
a+b+c+etc. by l+m+n+etc. is nothing but  the sum of all the binary combinations 
which can be built out of the letters of the two series, and the product  of the three 
series a+b+c+etc., l+m+n+etc., and s+t+v+etc. is the sum of all the ternary 
combinations which can be built from the three series of letters. Other forms will 
be produced from other operations. (1714, 670)

Leibniz is here very  close to the invention of modern logic just  two years before his 
death.  Combinatory algebra allows us to go past the limitations of classical logic in many 
ways.  First, it provides the algebra for truth functions of connectives, second it provides 
a logic of relations whereas classical logic is limited to subject–predicate propositions.  It 
is interesting to note that Leibniz here identifies the art of combinations with 
metaphysics, whereas Boole in the quotation mentioned in section 1 of this paper (p. 2) 
claimed that ‘we ought no longer to associate Logic and Metaphysics but Logic and 
Mathematics.’  However, the two claims are quite compatible, because as we said earlier, 
Boole means by  ‘metaphysics’ what is traditionally understood as metaphysics, having 
something to do with the world even if it is the world of conceptual schemes.  However, 
for Leibniz ‘metaphysics’ is purely formal second order philosophy.  So, his identification 
of ‘metaphysics’ is both with ‘mathematics’ as well as ‘logic’ both of which are also 
second order disciplines which are not about the world, so to speak.  This is the point 
where I started this presentation.

3.3 Proofs and Identity  
Leibniz perhaps made the greatest  contribution to ontology since Aristotle as he extended 
the categories which presented the ontology  of the world or of a conceptual scheme to 
syncategories which cut across categories and may be thought of as metacategories.2  
Identity is one of these syncategories.  Leibniz had the insight that logical proofs are 
simply  reductions to identities and identities are always self-identities of the form x = x.  
Here is an example:
Using the definitions:

(i) 2 = 1 + 1
(ii) 3 = 2 + 1
(iii) 4 = 3 + 1

2 This notion of syncategories comes from my teacher the late Professor Hector-Neri Castañeda in his 
course on Leibniz in 1977.
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We can prove:

2 + 2 = 2 + 2    by principle of identity
2 + 2 = 2 + (1+1)   by definition (i)
2 + 2 = (2 + 1) + 1   association
2 + 2 = 3 + 1    by definition (ii)
2 + 2 = 4    by definition (iii)

(Kneale and Kneale 1962, 333)

We may start  with a self-identity as in the above example and by  using only  definitions 
and substitution of identicals proceed to demonstrate the conclusion that we have to 
establish the truth of.  Or we may follow the reverse procedure of starting with the 
conclusion and reducing it to a self-identity:

2 + 2 = 4    
2 + 2 = 3 + 1    by definition (iii)
2 + 2 = (2 + 1) + 1   by definition (ii)
2 + 2 = 2 + (1+1)   association
2 + 2 = 2 + 2    by definition (i)

If Leibniz is right in his claim that all proofs can be reduced to use of identity and 
definitions alone, then all of mathematics is reducible to logic which is the claim of 
logicism.  Perhaps most  mathematicians would be opposed to this reduction.  Kneale and 
Kneale (1962, 334) cite the example of Fermat’s last theorem as a counterexample to 
logicism.  Until 1962 Fermat’s last  theorem had not been proven, the Kneales contend 
that if proofs were simply a matter of the use of only definitions and identities then surely 
the theorem would have been proven long ago.  Today the theorem stands proven by 
Wiles.  If Leibniz were alive today he would assert his logicism by  reducing this theorem 
to his procedure of either beginning with a self-identity or by beginning with the 
conclusion and reducing it to a self-identity.  Just because the example we have given 
above is elementary does not mean that all proofs using only identities and definitions 
will be so simple.  The actual proof like that of Wiles which uses elliptical geometry may 
be very  complex, but once a proof is found by  a mathematician, it can be reduced by  a 
logician to a proof that uses only identities and definitions.  

However, Leibniz does not seem to be justified in claiming that only  definitions 
and self-identity are used in his proof.  The property  of association is used.  Also the 
principle of the substitution of identicals for identicals is used.  These will have to be 
established.  Furthermore, the implicit definition of 1 as the successor of 0 is used.  Now, 
we will need the definition of 0 which may be one of the most difficult  tasks.  
Alternatively we can have the axiom that 0 is a number and another axiom that the 
successor of a number is a number, thereby 1 is a number.  All of this was not available to 
Leibniz.  However, Leibniz was on very firm grounds to claim that whatever is 
established through a proof is totally analytic, that is, that it is proven by necessary truths 
like self-identity, axioms, definitions and rules of inference.  The question then remains 
whether there is anything new under the sun, whether proofs of logic and mathematics 
can ever be ampliative when they  are analytic and not  constructive?  Such would be the 



20

20

objection of intuitionists.  Leibniz would respond that there is something ampliative 
about analytic proofs.  Let us go back to our example.  When we look at the starting point 
of 2 + 2 = 2 + 2, we may not immediately see the statement of the conclusion 2 + 2 = 4 in 
it.  Or, conversely, we may not immediately see that 2 + 2 = 4 is reducible to the self-
identity  2 + 2 = 2 + 2.  If someone has doubt about this let us change it to an example of 
complex numbers used by Leibniz: 

√1+√-3 – √1–√-3 = √6 (1702, 544)
Let us give a Leibnizian proof of this:

√1+√-3 – √1–√-3 = √6
(√1+√-3 – √1–√-3)2 = 6     
1 + √-3 – 2(√1+√-3)(√1-√-3) + 1 – √-3 = 6  
2 – 2(√1+√-3)(√1-√-3) = 6
-2(√1+√-3)(√1-√-3) = 4
(√1+√-3)(√1-√-3) = -2
(√1+√-3)(√1-√-3) = 4
1 –(-3) = 4
4 = 4

We have got our desired reduction to a self-identity.  But looking at our starting equation 
the self-identity  of 4 = 4 though anticipated in it is hardly self-evident and hence the 
derivation does get somewhere.
 Another way  to put  it is to make the philosophical distinction between the context 
of discovery and context of justification.  Actual proofs in mathematics are of course not 
given in the manner that Leibniz has given them.  In the actual process of a proof a 
mathematician does come upon something new, yet this proof can ultimately be reduced 
to that of either starting with or ending up  with a self identity once the proof is found.  
Hence, in the context of discovery when a new proof is found as for Fermat’s last 
theorem we have come upon something novel.  However, in the justification of this proof 
itself we may be able to reduce it to an identity.  
 Another example is provided by John Woods in response to a paper on abduction 
that I was to present in Windsor, Ontario in June 2009:

Suppose that we wanted to have an axiomatic proof of the completeness of some system 
S.  Then “S is complete” would be the proof’s target. Our task now would be to find 
premisses which together imply that conclusion.  This is a premiss-search task. Premiss 
searches  are cutdown problems. They are filtrations of up to indefinitely large spaces of 
options to smaller – sometimes unit – subsets. Roughly speaking, the filter’s function is 
to pick out the options that best serve the searcher’s current objective. In the case of an 
axiomatic proof of S’s completeness, a successful cutdown filter will pick out theorems to 
serve as premisses. To simplify somewhat,3 if the filter provides us with theorems T1 … 
Tn, and {T1 …, Tn} entails “S is complete”, then we have the desired proof.  (2009, 2)

What seems to be at least implicit in this is that this type of proof is ampliative here in a 
backward sense in that something new comes out in the search for premises.  If we were 
to reduce this proof to a Leibnizian proof of starting with an identity and ending up with 
the conclusion of the completeness theorem then the completeness theorem would be 
ampliative.

3 If the searcher’s desire is to have an elegant proof of S’s completeness, the filter will have to be more 
discriminating, aiming at the theorems minimally necessary for the desired entailment.
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.4 Axiomatic approach including soundness and completeness proofs
Leibniz made a brave attempt to axiomatise the universal logical calculus in ‘A Study 

in the Logical Calculus (early 1690’s).  Leibniz offers two axioms and two postulates:
 Axiom 1: B ⊕ N ∞ N ⊕ B 
 Axiom 2: A ⊕ A ∞ A
Postulate 1: Given any term whatever, something can be assumed to be diverse from 

it, and, if desired, disparate, or so that one is not in the other.
Postulate 2:  Any number of terms whatever,  such as A and B can be added together 

into one, composing A ⊕ B or L. (p. 372)
With the help of six definitions Leibniz goes on to state and prove 24 propositions.  The 
inspiration of his axiomatisation is obviously Euclid’s Elements.  The postulates here 
seem to be more like Euclid’s common notions.  This was Leibniz’s second attempt at 
constructing the propositional calculus.  The entire ‘A Study in the Logical Calculus’ is 
provided below in Appendix 1. 

How rigorous and how successful was Leibniz’s attempt at providing an 
axiomatised logical calculus?  This is perhaps for expert mathematicians to decide.  
Wolfgang Lenzen (2004) has expressed the Leibnizian logical calculus more formally in 
order to put forward his thesis that Leibniz’s ‘algebra of concepts’ is isomorphic to 
Boole’s algebra of sets (p. 9).  A sketch of the formalisation is given in Appendix 2.  
Lenzen’s formalisation of Leibniz is remarkable.  He combines, besides the work of 
Leibniz in Appendix 1 all other works of Leibniz on logic and cumulatively  builds up  
what can best be described as a modal predicate calculus with proofs of soundness and 
completeness, all given by Leibniz himself.  Here is an example of How Lenzen 
formalises Leibniz’s formulation:
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(p. 15)
 Furthermore, Lenzen shows how Leibniz came very close to complete 
axiomatised formulation of syllogistic logic.  Here are the rules of syllogisms:

(p. 56)
The following are the four basic valid forms of syllogism as discussed in section 2 above:
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(pp. 56–7).
Lenzen now goes on to show that  as valid forms in other figures can be reduced to these 
four valid forms in the first  figure, we have an axiomatic representation of classical logic: 
‘Hence {BARBARA, CELARENT, DARII, FERIO, OPP 1, 2} constitutes an axiomatic 
basis for the theory of the syllogism’ (p. 57).  Leibniz was able to derive a proof of 
soundness quite easily, but he was not really  able to provide a proof of completeness.  To 
help  Leibniz with the completeness, Lenzen goes on to sketch a more extensive axiomatic 
syllogistic logic, again derived from Leibniz himself, and then goes on to sketch the 
completeness proof (pp. 58–61).

.5 Modal and deontic logic
As discussed in 3.4 Lenzen believes that Leibniz more or less had a modal calculus at 

hand  along with a possible world semantics.  He sketches the following:

(pp. 40–46)
Lenzen then goes on to show how Leibniz builds a deontic logic on his modal logic with 
the following:

 
(pp. 40–46)
As can be seen in (DEON 1) the subscript ‘b’ of the necessity operator indicates ‘it is 
necessary  for a virtuous person’ and not unqualified ‘it is necessary’.  By (NEC 7) the 
unqualified ‘it is necessary’ implies ‘it is necessary for a virtuous person’, but the 
implication does not hold the other way.  So, though ought does not imply is, is does 
imply ought, a powerful insight of Leibniz.  Furthermore, the principle that if one is 
obligated to do something then one must be able to do it is also captured by (DEON 12a).
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 Lenzen remarks that the importance of Leibniz’s development of modal logic is 
that ‘By  means of a simple, ingenious device, Leibniz transformed the algebra of 
concepts into an algebra of propositions’ (p. 34).  If Leibniz really  did accomplish this it 
would justify Couturat’s claim that Leibniz ‘on certain points went beyond Boole 
himself’.  For Boole failed to develop a propositional logical calculus from his algebra of 
logic in terms of classes.  A second point where Leibniz went beyond Boole was his 
soundness and completeness proofs discussed in section 3.4.  Leibniz could easily have 
developed an epistemic logic as well, but if Lenzen has not found this, then Leibniz must 
not have considered it.

.6 Limitations of Leibniz
Despite the remarkable achievements of Leibniz we cannot say that modern logic 

emerged in Leibniz.  The main reason is the limitations of classical logic that he could not 
overcome.  Yet, Leibniz came so close that often his personality  is cited for the 
incompletion of his project: ‘He was a universal genius who conceived many  projects and 
made many beginnings but brought little to fruition.’  (Kneale and Kneale 1962, 320)  
This is perhaps too harsh, and as a die hard fan of Leibniz I will come to his defence by 
quoting from another universal genius: ‘For the beginning is thought to be more than half 
of the whole, and many  of the questions we ask are cleared up by it.’ (Aristotle, 
Nicomachean Ethics, 1098 b5)  Aristotle of course is talking about making genuine 
beginnings.  I have personally made many beginnings in my  philosophical carrier but 
perhaps none of them is a genuine beginning.  In the case of Leibniz he made a great 
number of genuine beginnings, and a universal algebra of logic was one of these 
beginnings.  So, we can say that  half of the emergence of modern logic took place with 
Leibniz.  But of course we cannot call half a task the whole of the task, hence we will 
have to wait until Boole for the dawn of modern logic.

For a better account of why Leibniz could not complete the task that he so seriously 
began, let us return to Couturat.  Couturat is aware that it would be an exaggeration to 
claim that modern logic emerged with Leibniz because that simply did not happen:

Comment se fait-il alors qu’il n’ait pas réussi à constituer définitivement la 
Logique algorithmique, comme Boole l’a fait un siècle et demi après lui?  C’est qu’entre 
tant d’essais et de projets divers, il n’a pas su discerner le meilleur,  l’adopter et le 
développer systématiquement.  Et il y à cela plusieurs raisons.   D’abord, par un respect 
excessif pour la tradition, il tenait à justifier la subalteranation et la conversion partielle, 
et par elles les modes du syllogisme dont la Logique moderne a établi l’illégitimité.  
Ensuite, par égard pour l’usage de la langue, il n’a pas su définir avec précision la portée 
existentielle des propositions particulières et universelles. Enfin et surtout, il n’a pas eu 
l’idée de juxtaposer et de combiner entre elles l’addition et la multiplication logiques, et 
de les traiter simultanément.  Or cela vient de ce qu’il se plaçait de préférence au point de 
vue de la compréhension; par suite,  il ne considérait qu’un seul mode de combinaison des 
concepts : l’addition leurs compréhensions, et négligeait l’autre mode : l’addition de leurs 
extensions.  C’est ce qui l’a empêché de découvrir la symétrie ou la réciprocité de ces 
deux opérations, qui se manifeste par les formulas de DE MORGAN4, et de développer le 
calcul de la négation,  qui repose sur ces formulas.  C’est aussi ce qui l’a amené à croire (à 
tort) que les relations d’extension obéissent aux memes lois que les relations de 

4 (a + b)′ = a′ b′,  (ab)′ = a′ + b′
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compréhension, et à les considérer comme réversibles, en changeant simplement le sens 
de l’inclusion5.  L’échec final de son système est donc extrêmement instructif, car il 
prouve que la Logique algorithmique (c’est-à-dire en somme la Logique exacte et 
rigoureuse) ne peut pas être fondée sur la considération confuse et vague de la 
compréhension; elle n’a réussi à se constituer qu’avec Boole, parce qu’il l’a fait reposer 
sur la considération exclusive de l’extension, seule susceptible d’un traitement 
mathématique6.

How is it then that he did not succeed to definitively constitute the algorithmic 
logic, as Boole was able to do one and a half century later?  It is between his too many 
essays and diverse projects, that he did not know to discern the better, to adopt and 
develop it systematically.  And there are many such reasons.  To begin with, due to 
excessive respect for tradition, he held to justify subalernation and partial conversion,  and 
by them the modes of syllogisms that modern logic has established as illegitimate.  Next, 
paying regard to the usage of language, he did not know how to define with precision the 
existential scope of particular and universal propositions.  Finally and above all, he did 
not have the idea of juxtaposing and combining between both the addition and the 
multiplication logics, and treating them simultaneously.  In fact this comes from giving 
preference to the point of view of comprehension; as a result, he only considered the 
mode of the combination of concepts: the comprensions of addition, and neglected the 
other mode: the addition of their extensions.  It was this that impeded the discovery of 
symmetry or reciprocity of these two operations which are manifested by the formulas of 
DE MORGAN4, and developing the calculus of negation, which is founded on these 

5 En réalité, en vertu du principe de dualité, on peut renverser le signe d’inclusion (ou bien en changer le 
sens), mais à la condition de remplacer partout les signes de l’addition et de la multiplication l’un par 
l’autre (ou de permuter leurs significations).  Mais il n’est pas permis de changer le sens des inclusions sans 
changer en meme temps celui des deux opérations, et c’est justement ce que Leibniz croyait possible.
  In reality, in virtue of the principle of duality, one can reverse the sign of inclusion (or better change its 
sense), but due to the condition of replacing all the signs of addition and multiplication one by the other (or 
of switching around their significations).  But he did not permit to change the sense of inclusion without at 
the same time changing both these operations, and it is justifiably this that Leibniz believed as possible. 
(my translation)

6 On remarquera que, dans tous ces essais de Calcul logique,  Leibniz est resté continé dans le domaine de 
la Logique classique, qui est celui des jugements de prédication, de la forme : << A est B. >>  Mais il 
convient de rappeler ici qu’il a eu tout au moins l’idée d’une Logique plus générale, qui étudierait d’autre 
relations entre les concepts que la relation d’inclusion (ou, au point de vue grammatical, d’autres copules 
que le verbe être).  D’une part, sous l’influence de JUNGIUS, il avait entrevu des formes de raisonnement 
asyllogistiques, comme les inférences du droit à l’oblique, et l’inversion des relations (Chap. III, # 15).  
D’autre part, comme mathématicien, il avait aperçu qu’il y a entre les objets de la pensée bien d’autres 
relations que celle d’inclusion, et il se proposait de construire des algorithmes appropriés à chacune d’elles 
(Chap. VII, #8).  Mais tout cela semble être resté à l’état de rève ou d’ébauche.  Ce n’est qu’au XIXe siècle 
que s’est constituée une Logique vraiment universelle, la Logique des relations (dans laquelle renter la 
Logique classique, meme généralisée sous sa forme algorithmique) par les travaux de DE MORGAN, de 
PEIRCE et de SCHRÖDER.
  One will notice, that in all these essays on the logical Calculus, Leibniz continuously stays in the domain 
of classical logic, which is in the judgements of predication, of the form: <<A is B.>>  But he found 
convenient to call back this idea that he had of more or less of a most general logic, that will study the other 
relations between these concepts other than the relation of inclusion (or, to the point of surface grammar, of 
other copulas than the verb to be).  On the one hand under the influence of JUNGIUS, he had caught a 
glimpse of forms of asyllogistic reasoning, like the inference of the straight line from the oblique, and the 
inversion of relations (Chapter III, #15).  On the other hand, as a mathematician, he had noticed that among 
the objects of thought there are relations other than that of inclusion, and he proposed to construct the 
appropriate algorithms for each of these (Chapter VII, #8).  But all of this seems to rest on the state of a 
dream or of a sketch.  It is only in the 19th century that a truly universal calculus, the logic of relations (in 
which classical logic comes back, ever more generalised under its algorithmic form) by the works of  DE 
MORGAN, PEIRCE and SCHRÖDER. (my translation)
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formulas.   This is also what led him to believe (mistakenly) that the relations of extension 
obey the same laws as the relations of compression, and considered them as reversible, in 
simply changing the sense of inclusion5.  The final setback of his system is therefore 
extremely instructive,  because it proves that the algorithmic logic (that is to say in sum 
the exact and rigorous logic) cannot be founded on the confused and vague consideration 
of comprehension; it could not succeed without Boole,  because he built them on the 
exclusive considerations of extension, which alone is susceptible to a mathematical 
treatment. (my translation)

In sum, Leibinz’s inability to come up with the full-fledged development of modern logic 
was due to his inability  to transcend all the limitations of classical logic.  The last 
sentence clear states that modern logic would have to wait  until Boole for its emergence, 
and hence it is the perfect transition to our next section.

4. The Emergence of Modern Logic in Boole’s Algebra of Logic

I say nothing new with the title of this section but merely announce my agreement 
with what seems to be the consensus among historians of logic, that modern logic can be 
said to have emerged with Boole’s algebra of logic in the middle of the nineteenth 
century.  I have jumped one and a half centuries from Leibniz to Boole, consequently 
skipping big name philosophers such as Berkeley, Hume, Reid, Wolff, Kant, Mill, 
Bolzano and Hegel.  Earlier, I have also more or less ignored big name philosophers of 
the seventeenth century such as Descartes, Malebranche, Spinoza and Locke, whereas I 
have claimed some significant contribution of Hobbes.  I have not done this due to 
paucity of time, as I am attempting to offer as comprehensive an account of all the 
essential factors that were responsible for the emergence of modern logic.  Rather, I 
believe that these philosophers’ contributions to the development of modern symbolic 
logic were minimally significant even though their contributions to the philosophy of 
logic, especially  that of Kant and Bolzano may  be significant.  On the other hand the 
contributions of mathematicians to the emergence of modern logic during these 150 years 
were infinitely  more significant, both of big name mathematicians and the not so famous 
mathematicians.  I will hence turn in the next two subsections 4.1 and 4.2 to the transition 
of mathematics from being restricted to the domain of quantity  to an abstraction where it 
is applied to a more generalised domain of which quantity is a subclass. 

To continue with our transition from section 3 and to justify why we are now 
turning to the development of mathematics in the late eighteenth and early nineteenth 
centuries let me restate the quotation from Kneale and Kneale (1962, 378):

Although Leibniz had put forward a number of brilliant suggestions, it was not possible 
to make sure progress until mathematics had developed so far that the sort of abstraction 
he desired seemed natural and easy.  When logic was revived in the middle of the 
nineteenth century, the new vigour came from mathematicians who were familiar with 
the progress of their own speciality, rather than from philosophers who were occupied 
with the controversies of idealism and empiricism. 
 

4.1 Non-Euclidean Geometry and topology as abstractions from quantity
 One of the most interesting episodes in the history of geometry  was Giovani 
Girolamo Saccheri’s (1667–1733) attempt to prove Euclid’s fifth postulate in Euclides 
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Vindicatus (1733).  In a reductio set up Saccheri sets out to prove the right angle 
hypothesis of Euclid in the Khayyam–Saccheri quadrilateral: 

If angles A, B and D are right angles, it must be demonstrated that  AC is the only  line that 
can be drawn to make the quadrilateral in which angle C is also a right angle.  The 
reductio argument takes one by one, the possibility of AK as a line which can be drawn to 
complete the quadrilateral in which ∠AKD is obtuse; and the possibility of AL as a line 
that can be drawn to complete the quadrilateral in which ∠ALD is acute.  In proving these 
latter two false, Saccheri comes very  close to developing non-Euclidean geometries of 
the hyperbolic and elliptical kinds as he develops the possible theorems base on these 
alternate hypotheses.  Of course Saccheri would never have dreamt that he was inventing 
non-Euclidean geometries as his purpose was to prove Euclid’s fifth postulate by proving 
that these two alternatives were false.  In his proof against the acute angle hypothesis 
there is a flaw in that Saccheri assumes that a line could be extended infinitely as this 
does not happen in elliptical geometry. (Kneale and Kneale 1962, 381)  If Saccheri means 
‘a Euclidean line’ then he begs the question.  If Saccheri had been successful in his proof 
then he would have proven the consistency of Euclidean geometry as the other four 
postulates had already  been proven.  His failure to actually have proven what he thought 
he had proven does not of course imply that Euclidean geometry is not consistent, but 
what it does imply is that if it is consistent then so could non Euclidean geometries be 
consistent but this would have to be established on its own. (Ibid. p. 382)  Euclidean 
geometry appeals to the geometrical intuition of space and many  believe that it is still the 
correct geometry for three dimensional space that we live in whereas non-Euclidean 
geometries apply to two and more than three dimensional spaces.  Since these spaces do 
not involve the three dimensional spatial intuition that humans have, it  involves a level of 
abstraction from what is normally thought of as quantity in geometry.  This brought out 
the realisation that  what was important  in Euclidean geometry and what is important in 
all axiomatic systems is that given the axioms the rest  of the system follows through 
purely logical inferences, as Kneale and Kneale put it: 

When one proposition follows logically from another, it should be possible to formulate 
the two propositions in such a way that their relation can be seen to depend on their form 
alone, that is to say,  on their logical structure as opposed their special subject-matter.  (p. 
384)

Euclidean geometry was developed since Saccheri by Gauss (1777–1855), Lobachevski 
(1792–1856), Bolyai (1802–1860) and Riemann (1826–1866).  What the development of 
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non-Euclidean geometries showed was that alternative sets of axioms could be used to 
build alternative formal systems of geometry  each of which was consistent.  This brought 
into question whether the axioms were true in the traditional notion of ‘true’ as 
corresponding to facts or whether they were true by convention.  If the latter is the case 
then we would have to rethink the distinction between mathematical demonstrations and 
dialectical arguments, as it seems that in both we are now starting with the assumption 
that the axioms are true rather than from the truth of the axioms.  I will not  enter this 
controversy  now, and emphasise again that the significance of the development of non 
Euclidean geometries for modern logic was that there could be an axiomatic geometry 
that did not rely on the intuition of space, which we could call purely formal geometry 
following from the set of axioms that are provided for it.  
 The other development was the emergence of topology as qualitative geometry by  
Euler (1707–1783), Mobius (1790–1868), Listing (1808–1882), Jules Henri Poincaré 
(1854–1912) and Oswald Veblen (1880–1960).  In order to understand the level of 
abstraction that topology introduced let us define two notions as Kneale and Kneale do:

It two different interpretations of any kind for the extra-logical signs in a set of axiom 
formulae both yield truths and the systems of things described by the formulae in these 
interpretations are so related that for every item in the one there is a single corresponding 
item in the other, the two interpretations are said to be isomorphic.  If, further all the 
results of the possible interpretations (or models,  as they are sometimes called) for a 
certain set of axiom formulae are isomorphic one to another, the set of axioms is said to 
be categorical or monomorphic. (p. 387)

Topology as qualitative geometry  studies all ‘properties that  are invariant under the 
operations of a group’ (ibid. p, 389).  Whereas the axiom systems of lower level 
geometry, metrical geometry, are monomorphic, the axioms systems of topology as 
descriptive geometry  may or may not be monomorphic.  In Vebelen’s descriptive 
geometry for example the axiom set is monomorphic with respect to betweenness but 
polymorphic with respect to congruence.  Hence, from the same topological geometry 
alternative metrical geometries can be derived.  In this way isomorphisms among 
Euclidean and non-Euclidean geometries can be established at the level of topology 
within a monomorphic set of axioms.  This universality of topology relative to metrical 
geometry set the ground for a universal logical calculus.

4.2 Development of algebra not restricted to quantity
 From the end of the eighteenth century  to the early nineteenth century algebra 
also took a turn towards the more abstract.  Group theory  was developed by Cauchy 
(1789–1857), Abel (1802–1829), Galois (1811–1832),  Cayley (1829–1895) and others.  
Also, the concept of numbers was also evolving towards greater abstraction.  William 
Hamilton (1805–1865) came up with the hyper-complex numbers quaternions of the form 
x + yi + zj + wk, where i, j and k represent rotations in three mutually perpendicular 
planes.  Unlike complex numbers these numbers do not satisfy  all the general rules of 
algebra, as ij = –ji.  (Kneale and Kneale 1962, 398).  A more generalised algebra was 
hence required.
 The development during this period that was essential for Boole’s algebra of logic 
was that of symbolic algebra.  As we have already seen in Leibniz the art of combination 
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in algebra is more concerned with the laws of combination itself and not so much with 
the objects of combination.  George Peacock (1791–1858) distinguished between 
arithmetical and symbolic algebra. (Peckhaus 2009, 164). Peacock claims that the 
operations in symbolic algebra must be open to interpretations other than that in 
arithmetic:

In the first transition from Arithmetic to Algebra, […] in the very first 
applications of such operations, the mere use of general symbols renders the proper 
limitation of their values, […] thus a – (a + b) would obviously express an impossible 
operation in such a system of Algebra; but if a + b was replaced by a single symbol c,  the 
expression a – c, though equally impossible with a – (a + b), would cease to express it.  
The assumption however of the independent existence of the signs + and – removes this 
limitation, and renders the performance of the operation denoted by – equally possible in 
all cases: and it is this assumption which effects the separation of arithmetical and 
symbolical Algebra, and which renders it necessary to establish the principles of this 
science upon a basis of their own […] It […] makes it necessary to consider symbols not 
merely as the general representatives of numbers, but of every species of quantity, and 
likewise to give a form to the definitions of the operations of Algebra, which must render 
them independent of any subordinate science […] in framing the definitions of 
algebraical operations, to which symbols thus affected are subjected, we must necessarily 
omit every condition which is in any way connected with their specific value or 
representation: in other words, the definitions of some operations must regard the laws of 
their combination only: thus the operations denoted by + and – must regard the affection 
of symbols (with their + and –, whether accompanied or not by any other signs of 
affection which they are capable of receiving) by them, according to an assumed law for 
the concurrence of those signs […] Again, in order that such operations may possess an 
invariable meaning and character, […] when any number of such operations are to be 
performed and of symbols to be combined by means of them, we shall suppose the results 
to be the same,  in whatever order those operations succeed each other. (Peacock 1830, pp. 
viii–x)

Peacock hence establishes the primacy  of combinations over what they combine in the 
new symbolic algebra.  

However, Peacock is not quite able to divest  pure algebra of quantity.  This task is 
accomplished by Duncan Gregory who defined symbolic algebra as ‘the science which 
treats of the combination of operations defined not by  their nature, that is by what they 
are or what they do, but by the laws of combination to which they  are subject’ (1840, 
208).7  Hence, even if by nature the operations of + and – presuppose quantities, in the 
new symbolical algebra + and – are defined only by the laws of combination.  It seems 
that Leibniz’s dream came true, and this is exactly what Boole needed to build his algebra 
of logic in which + and – would have purely  combinatorial meaning independent of what 
was being combined.  

Boole and his immediate predecessors were interested in logic but their main 
concern in the development of symbolical algebra was a reform in algebra itself towards 
greater abstraction to complement similar moves in geometry discussed above.  Though 
Peacock, Gregory and Boole were British there was a parallel, independent and similar 
development of symbolical algebra and from that of the algebra of logic by 
mathematicians such as Hermann Grassmann (1809–1879) and Robert  Grassman (1815–
1901).   The British as well as the Germans mentioned were concerned with ‘a reform of 

7 I have got this quotation of Gregory from Peckhaus 2009, 164.
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mathematics by  establishing an abstract view of mathematics which focused not on 
mathematical objects like quantities but on symbolic operations with arbitrary objects.  
The reform of logic was only secondary.’ (Peckhaus 2009, 175)  

Most historians of mathematics and logic claim that the developments of 
symbolical logic and the algebra of logic in Germany though more or less parallel in the 
first half of the eighteenth century were not interactive and did not  borrow from each 
other.  If this is true it  brings out the important feature that  there is was an internal move 
from the inside of algebra towards greater abstraction which led to the definition of 
‘combination’ independent of the objects of combination but subject only to the laws of 
combination.  This is important for realising why Leibniz could not and Boole could 
invent modern logic as it was the history of algebra reaching a peak that was not available 
to Leibniz.

Augustus DeMorgan (1806–1871) made a distinction between ‘technical algebra’ 
and ‘logical algebra’, the former was the art of using symbols under specified rules and 
the latter was the science of giving meaning to primary symbols and interpreting 
subsequent results (Peckhaus, 169).  Logical algebra then rather than technical algebra is 
the universal calculus which can now be called the ‘algebra of logic’ hence fulfilling 
Leibniz’s dream.  

4.3 Boole’s pathbreaking work: The Mathematical Analysis of Logic
 Boole being a mathematician was greatly  influenced by Peacock and Gregory’s 
development of symbolical algebra and wanted to develop such an algebra which would 
not be restricted to quantity even further.  Some historians of logic hence claim that Boole 
was more concerned with the development of symbolical algebra than of symbolic logic 
and the development of symbolic logic in The Mathematical Analysis of Logic 1847) was 
more to provide an example of the use of symbolical algebra than for the development of 
logic itself: 

Although Boole’s logical considerations became increasingly philosophical with time, 
aiming at the psychological and epistemological foundations of logic itself, his initial 
interest was not to reform logic but to reform mathematics.  He wanted to establish an 
abstract view on mathematical operations without regard to the objects of these 
operations.  When claiming “a place among the acknowledged forms of Mathematical 
Analysis” (1847, 4) for the calculus of logic, he didn’t simply want to include logic in 
traditional mathematics.  The superordinate discipline was a new mathematics. (Peckhaus 
2009, 166)

 In this section part  of my  purpose is to unfold a narrative in which we see that Boole was 
very much aware even in this early  work of the need to reform logic and this played as 
great a role in this path breaking work as did his desire to create a new mathematics.  I 
have already quoted above that Boole wanted to divorce logic from metaphysics and wed 
it to mathematics (1847, p. 13).  Kneale and Kneale state: 

The idea that algebraic formalae  might be used to express logical relations occurred to 
him first when he was still in his teens […] But the renewed interest in logic which let 
him to write this little book in 1847 was due to the […] controversy in which Sir William 
Hamilton of Edinburgh claimed priority in adoption of the doctrine of the quantification 
of predicates, charged Augustus De Morgan with plagiarism, […] (1962, 404)



31

31

As my narrative unfolds we shall see that in this work Boole was not only consciously 
developing logic for the sake of logic, but also had keen insights on the history  of logic, 
due to which he could show how the development of modern algebra could help  logic 
transcend some of the difficulties that had retarded the growth of logic due the limitations 
of classical logic.  If Boole’s point was simply to establish logic as an example of a 
symbolical algebra which does not have objects of quantity, then he would not have made 
the efforts in the work that he does to show the intricate manner in which algebra could 
improve the understanding of traditional logic, and at one point he even claims that the 
algebra of quantity can come in to the aid of logic.

4.3.1 The algebraic combinatorial analysis of logic  
In the first paragraph of the Introduction Boole explicitly states the characterisation of 
symbolical algebra to satisfy Leibniz’s dream that I have discussed in section 4.2:

They who are acquainted with the present state of the theory of Symbolical Algebra, are 
aware that the validity of the processes of analysis does not depend upon the 
interpretations of the symbols which are employed, but solely on the laws of their 
combination.  Every system of interpretation that does not effect the truth of the relations 
supposed, is equally admissible, and it is thus that the same process may,  under one 
scheme of interpretation, represent the solution of a question on the properties of 
numbers, under another, that of a geometrical problem, and under a third, a problem of 
dynamics or optics. (Boole, 1847, 3)

Boole is hence in search of the laws of combination that could be interpreted differently 
to generate analysis or geometry  or dynamics.  Isn’t what Boole is looking for then not a 
universal calculus that Leibniz was looking for?  There is almost a consensus among 
scholars that Boole did not become aware of Leibniz’s attempt at a universal calculus for 
logic until much later.  I have no reason not to trust the scholars or Boole’s honesty, but it 
is really difficult  to swallow this.  What is not clear is that Boole takes logic to be this 
universal calculus of combinations or with this universal combinatory calculus would be 
pure mathematics with logic as branch of it.  This ambiguity is reflected on the very next 
page:

We might justly assign it as the definitive character of true Calculus,  that it is a method 
resting upon the employment of Symbols, whose laws of combination are known and 
general, and whose results admit of a consistent interpretation.   That to the existing form 
of Analysis a quantitative interpretation is assigned, is the result of the circumstances by 
which those forms were determined, and is not to be construed into a universal condition 
of Analysis.  It is upon the foundation of this general principle, that I propose to establish 
the Calculus of Logic, and that I claim for it a place among the acknowledged forms of 
Mathematical Analysis, regardless that in its object and in its instruments it must as 
present stand alone. (ibid, 4)

The majority of this passage supports logicism, the thesis that logic is the foundation for 
all of mathematics, but the last two lines introduce a tension.  It seems that on the one 
hand Boole wants to say that logic is the foundation for all of mathematics but on the 
other hand he wants to say  that logic is a branch of mathematics.  No wonder that 
Peckhaus who supports the latter as the correct state of mind of Boole at the time quotes 
only this last part without quoting the first part.  I think we have a sort of a chicken and 
egg paradox here which can be easily resolved in a similar fashion that I have dealt with 
the appearance of a predicate logic before the appearance of propositional logic in section 
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2.  If Boole could peak ahead reading through his own later works, and those of Frege, 
and Whitehead and Russell, he would resolve the present tension in favour of the logicist 
thesis.  The paradox of logicism is that even though logic is the foundation of 
mathematics, the development of logic always lags behind that of mathematics; 
particularly in 1847, whereas symbolical algebra was already established, symbolic logic 
had not even properly  begun in a formal manner.  But once this was done, by the end of 
this very work of Boole, then this symbolic logic would become the foundation for 
symbolical algebra as well as other branches of mathematics.  However, to establish this 
symbolic logic formally  Boole would use the works of his immediate predecessors like 
Peacock and Gregory on symbolical algebra to construct symbolic logic.
 This dialectic continues throughout the Introduction as Boole claims at one point 
that logic is applied mathematics (p. 10).  He also wants to derive the theorems of logic 
just as the theorems of mathematics are derived (p. 6).  But near the end of the 
Introduction after rescuing logic from metaphysics and placing under the partnership of 
mathematics he claims:

Should any one after what has been said, entertain a doubt upon this point, I 
must refer him to the evidence which will be afforded in the following Essay.  He will 
there see Logic resting like Geometry upon axiomatic truths, and its theorems constructed 
upon the general doctrine of symbols,  which constitutes the foundation of the recognised 
Analysis.  […]  Logic not only constructs a science, but also inquires into the origin and 
the nature of its own principles,—a distinction which is denied to Mathematics. (ibid., 
13) 

This will definitely  be welcome by logicists.  First, Boole says that the logic he will 
construct can serve as the foundation of Analysis, and then he establishes that logic 
cannot be founded on any  branch of mathematics since unlike mathematics it inquires 
into the origin of its own principles.  It can hence serve as the foundations for any branch.  
However, Boole does not say that  logic can serve as a foundation for all mathematics.  
Rather, he sees logic as a parallel to geometry.  There is a remarkable parallel in Frege 
who claims logicism in arithmetic but not in geometry, but Frege’s reason is that 
geometry requires spatial intuition and arithmetic does not require any intuition.  Boole’s 
reason seems to be that Geometry is axiomatic and the logic he builds will also be 
axiomatic.  This is very interesting because as arithmetic had not yet been axiomatised 
Boole appeals to geometry in order to attempt an axiomatisation of logic.  But as I will 
argue later the actual axiomatisation of logic was more or less simultaneous with that of 
arithmetic and set theory which goes a long way in supporting the logicist thesis.  

However, in the next paragraph the dialectic takes a turn:
 The application of this conclusion to the question before us is clear and decisive.  
The mental discipline which is afforded by the study of Logic, as an exact science,  is, in 
species, the same as that afforded by the study of Analysis. (ibid., 13)

If logic and analysis are both species then the genus they are the species of is 
mathematics so that logic is again declared as a branch of mathematics and the hopes of 
logicism to find a supporter in Boole are dashed. Boole goes on:

 Is it then contended that either Logic or Mathematics can supply a perfect 
discipline to the Intellect?  The most careful and unprejudiced examination of this 
question leads me to doubt whether such a position can be maintained.  The exclusive 
claims of either must, I believe, be abandoned, […]  it is one thing to arrive at correct 
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premises,  and another thing to deduce logical conclusions, and that the business of life 
depends more upon the former than upon the latter.  

Hence, at the end of the paragraph not only does Boole not accept logicism here but 
announces that logicism could never succeed as arriving at the correct premises is in the 
domain of mathematics and not in the domain of logic.  In the first part of the paragraph 
Boole promotes a parallelism between mathematics and logic.  So that we can conclude 
the Introduction by noting that all through the writing of the Introduction from the 
beginning to the end Boole is very consciously thinking of logic.  Hence, it is unlikely 
that he wants to develop algebraic logic merely as a branch of mathematics, but as a new 
and radical logic itself.

4.3.2 The algebra of classical logic  
 In the first section entitled FIRST PRINCIPLES Boole lays down the foundations 
of the algebra of logic which is a logic of classes.  1 represents the universe; X, Y, Z, 
represent members of classes;   x, y, z, are elections which pick out members from the 
classes.  The three combinatory  laws are: (1) x(y + z) = xy + xz (distributive) (2) xy = yx 
(commutative); and (3) x2 = x (index).  (3) is obviously  the one that does not hold in 
ordinary  algebra.  (ibid., p. 15)  Boole claims these three laws along with the axiom that 
equivalent operations performed on equivalent subjects produce equivalent results, 
constitute the axiomatic foundation on which all of logic can be built. (ibid., p. 18)  The 
rest of the section goes on to the symbolization of propositions of classical logic that is 
summarized in a table:



34

34

(ibid., 25)
It seems like the same old story?  Where is modern logic? Are we again in the same boat 
like Leibniz that we cannot escape the limitations of classical logic? These are tricky 
questions.  Classical logic was still the only formal logic available to Boole, yet he 
realised the limitations of it perhaps even more than Leibniz.  What he is trying to do in 
this essay is to construct a new logic, but he is going to do it  by first giving an algebraic 
interpretation of classical logic, and when modern logic emerges, and I claim that this 
happens at the end of this work, then classical logic can be discarded if we so desire.  
What is new, what no one before him was able to do so clearly  is to represent categorical 
statements as explicit algebraic equations.
 In the next section entitled ON THE CONVERSION OF PROPOSITIONS the 
discussion of classical logic continues where the rules of conversion are explained with 
the help of algebraic equations.
 In the next section OF SYLLOGISMS, the valid syllogisms of classical logic are 
arrived at algebraically  by multiplying equations and eliminating y which represents the 
traditional middle term.  The rule of elimination is specified as follows:
 ay + b = 0
          a′ y + b′ = 0  
When y is eliminated this reduces to:
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 ab′ – a′b = 0  (ibid., 32)

Here is how Boole captures the valid mood bArbArA in the first figure:
  y(1 – x) = 0     or (1 – x)y = 0   
  z(1 – y) = 0  or –zy + z = 0
Now, let us multiply the two equations eliminating the y: 
  (1 – x) z = 0
By commutation we get:
  z(1 – x)  = 0. (ibid., 34)
Which is the desired AAA in the first figure.
Now let us try AA in the second figure.  Does it yield a conclusion?
  x(1 – y) = 0  or –xy + x = 0
  z(1 – y) = 0  or  –zy + z = 0 
Now, let us multiply the two equations eliminating the y: 
  –xz + xz = 0
             0 = 0.
Whenever the result is 0 = 0, then no conclusion can be reached (ibid., 38)so AA in the 
second figure does not yield a conclusion, which means all of AAA, AAE, AAI and AAO 
are invalid in the second figure.
Now, let us consider IO in the first figure.  Does it yield a conclusion?
    vy = vx  or vy – vx = 0  or vy – vx = 0
  v = z(1 – y)  or  v – z(1 – y) = 0  or zy + (v – z)  = 0
Now, let us multiply the two equations eliminating the y: 
  v(v – z) + vz = 0
  vv – vz + vz = 0
  v = 0
So we have another type of invalid syllogisms in which the conclusion does not reduce to 
0 = 0.  Boole claims that this distinction of the two types of syllogisms where a valid 
conclusion is not derived is a purely mathematical one but it points out an important 
distinction in classical logic.  In the second type which don’t reduce to 0 = 0 there is no 
virtual middle term as a medium of comparison (ibid., 40).  Hence Boole concludes:

I am not aware that the distinction occasioned by the presence or absence of a middle 
term, in the strict sense here understood, has been noticed by logicians before.  The 
distinction, though real and deserving attention, is indeed by no means an obvious one, 
and it would have been unnoticed in the present instance but the particularity of its 
mathematical expression. (ibid., 41)

This is a classic example of how the mathematisation of logic betters logic so that we can 
have a better understanding of language and the world.  Again, a Leibnizian dream is 
realised by Boole and modern logic is emerging.
 Boole goes on with more generalized equations for representing syllogisms and 
by the time we reach the end of this section on page 47, some modern logicians with 
dislike for classical logic may be getting impatient as we have finished 57% of the book 
and most of the work so far has been on the algebrisation of classical logic.  So where is 
modern logic?  I request your patience as Boole would have requested the patience of his 
readers.  We must remember that Boole is not necessarily  creating modern logic as we 
know it, but rather as the title of my presentation claims, modern logic is emerging in 
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Boole, perhaps unknown to Boole himself.  A very important transition is taking place in 
these pages from 40 to 48.  Boole realises the limitations of classical logic, such as the 
order of the premises, and also being restricted only to subject–predicate propositions.  In 
the generalized algebraisation of syllogisms Boole is attempting to show algebraically 
that the order of premises is not important as classical logic claims to be, which is one of 
the features of modern logic.  Hence, the final generalised representation of premises that  
he offers is:

a + bx + cy + dxy = 0,
a′ + b′z + c′y + d′zy = 0. (ibid., 47)

4.3.3 The emergence of the algebra of propositional logic  
 In the next  section entitled OF HYPOTHETICALS Boole makes the crucial turn 
to propositional logic and this really is the emergence of modern logic as what  has been 
missing all along, a propositional calculus, can now be developed using algebra.  This is 
the monumental contribution of mathematics, algebra and Boole to logic.  He turns to the 
discussion of conditionals.  First he presents conditionals as what appear to be in terms of 
classes as in syllogistic logic: 

If A is B, then C is D,
But A is B, therefore, C is D.

But then he expresses it in terms of propositions without reference to classes: 
If X is true, then Y is true,

But X is true, therefore, Y is true. 
(ibid., 48)

I have centred and these and changed the font to represent exactly what is going on in the 
book.  I do not know whether this was intentional on Boole’s part  or a printing error or 
selection.  Whatever be the case it does a perfect  job of making the point that where the 
small font ends and where the big font begins is the emergence of modern logic.  It is also 
interesting to note that  the first  example of a conditional argument given here is that of 
modus ponens.  As modern logic would develop in its axiomatised form modus ponens 
would become the preferred single rule of inference by Frege and others.
 Here is what Boole says about this remarkable transition:

Thus, what we have to consider is not objects and classes of objects, but the truths of 
Propositions, namely, of those elementary Propositions which are embodied in the terms 
of our hypothetical premises. (ibid., 48–9).

We can embalm page 48 as the turning point where the long awaited transition from 
classical logic to modern logic occurs.
 Boole calls the propositions not involving classes ‘elementary  propositions’ (ibid., 
49). Using 0 for false and 1 for true Boole now comes up with the possibilities for truth 
tables (ibid., 50–1) and goes on to define conjunction and disjunction (both exclusive and 
inclusive) and conditional truth functionally (ibid., 52–4).  As truth values are algebrised 
we see again how mathematics can help us reach important insights in logic.  These 
equations can be used for understanding truth functionality in a way  that may not be 
understood without mathematics.  Let us consider the equation for the exclusive 
disjunction ‘Either X is true or Y is true’.  Boole expresses this as: x – 2xy + y = 1, which 
is acquired from what we may call the second and third row of the truth table: x(1 – y) + 
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y(1 – x) = x – xy + y – xy = x – 2xy + y, and this must be true, so we set it equal to 1 as x – 
2xy + y = 1.  Now, since x2 = x.  We get:  x2 – 2xy + y2 = 1.  Which reduces to (x – y)2 = 1; 
x – y = ± 1.  This is actually the case for when x is true having the value of 1, then y must 
be false having the value 0 so that the equation is satisfied.  Similarly, when x is false, 
having the value 0, then y is true, having the value 1 to satisfy the equation. {ibid., 55} 
Hence, we see here a clear example from the inside of Boolean algebra how a simple 
algebraic operation, but without regard to quantity as the rule x2 = x is not a rule of 
ordinary algebra can lead to a clear definition of a logical operation like disjunction.  
 Boole next goes on to give algebraic formulations of modus ponens {x(1 – y) = 0, 
x = 1, ∴ 1 – y = 0 or y = 1}, modus tollens { x(1 – y) = 0, y = 0, ∴ x = 0}, disjunctive 
syllogism (exclusive) {x + y – 2xy = 1, x = 1, ∴ y = 0}, disjunctive syllogism (not 
exclusive) {x + y – xy = 1, x = o, ∴ y = 1}, simple constructive dilemma {x(1 – y) = 0, 
z(1 – y) = 0, x + z –2xz = 1, ∴ y = 1}, composite constructive dilemma {x(1 – y) = 0, w(1 
– z) = 0, x + w –xw = 1, ∴ y + z – yz = 1}, and complex destructive dilemmas of two 
kinds. (ibid., 56–7).  These representations will surely make the fans of natural deduction 
very happy.  I may say that for the purposes of this winter school I shall remain a closet 
natural deduction fan.  

4.3.4 The role of functions in logic  

In the next section entitled PROPERTIES OF ELECTIVE FUNCTIONS Boole claims at 
the end that mathematicians will understand this much better than logicians, not being a 
mathematician and neither a genuine logician I will hence not even venture into the 
details of this section.  A point that must be noted however is that Boole uses the 
mathematical notion of functions for the algebra of logic.  Hence, he anticipates Frege’s 
later use of function and argument to represent  propositions.  Even though Boole is using 
it here perhaps more in terms of truth functions rather than propositional functions.  This 
is how Boole concludes this sections:

The purport of the last investigation will be more apparent to the mathematician than to 
the logician.  As from any mathematical equation an infinite number of others may be 
deduced, it seemed to be necessary to shew that when the original equation expresses a 
logical Proposition,  every member of the derived series, even when obtained by 
expansion under a functional sign, admits of exact and consistent interpretation. (ibid., 
69)   

Perhaps Boole did not  develop  the notion of functions to represent predicate and 
relational propositions, but what he has suggested here is potentially much more powerful 
a tool that can be used for logic than what in fact Frege actually accomplished with 
function and argument.
 In the final section ON THE SOLUTION OF THE ELECTIVE EQUATIONS 
Boole remarks that solutions of elective equations are similar to those of linear 
differential equations (ibid., 70).  
 Finally, at the end of the POSTCRIPT, Boole makes the theme of his work quite 
apparent: ‘The general doctrine of elective symbols and all the more characteristic 
applications are quite independent of any quantitative origin.’ (ibid., 82)  This is where 
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we began, based on the development of symbolical algebra that  divests itself of 
quantitative origin to construct an algebra of logic that does not have any  quantitative 
origin.

4.3.5 The incompletion of the emergence of modern logic  
Let us first see which characteristics of modern logic emerged in this work.  With the use 
of algebra, formalisation of logic took a quantum leap.  Proofs became simpler and at the 
same time more rigorous with the algebraisation of logic as demonstrated by Boole’s 
algebrisation of classical logic.  There is a definite transformation from the classical logic 
categorical propositions of classes to the elementary compositions and compounds 
thereof on which modern logic constructs a propositional calculus.  A definite turn is 
made in concretizing an axiomatic system for symbolic logic.  In sum we may say that in 
displaying all these features of modern logic whatever remained potential from Aristotle 
to Leibniz (almost bursting into actuality  with Leibniz) was actualized by  Boole and that 
is why he can be claimed to be the founder of modern logic.  However, even though the 
mathematisation of logic had definitely begin with Boole, a lot of what he started here 
was quite incomplete.  Neither a propositional calculus nor an axiomatic system of the 
algebra of logic are properly developed here.  Quantification of predicates which 
Hamilton and De Morgan had introduced and Boole was well aware of it are hardly 
discussed and neither is the logic of relations. Furthermore, other features of what we 
have characterized as modern logic in section 1, such as development of modal logic, 
proofs of consistence and completeness have not even been attempted in this work.
 What we have found in the unfolding of the narrative of the Mathematical 
Analysis of Logic is that throughout the work Boole is quite aware of the importance of 
logic both historically as well as at the present and in the future.  Hence, Boole’s interest 
is not  simply to create an algebra of logic as an exercise of mathematics and to display a 
shining example of symbolical algebra by applying it to logic, but it is also and perhaps 
more so to develop logic itself, which has lagged behind precisely because 
mathematicians have not taken proper interest in it.

5. Conclusion
 Perhaps the most important factor that stands out in the development of modern 
logic that I have not discussed in detail in this presentation is the axiomatisation of 
arithmetic.  As we all know, geometry  was axiomatised from the time of Euclid in 3rd 
century BCE.  But arithmetic as we also know did not get axiomatised until the 
Nineteenth century by Dedekind and Peano.  The fact that logic could not be properly 
axiomatised until arithmetic was axiomatised shows the intimate connection between 
arithmetic and logic that did not exist between geometry  and logic.  This has led to the 
view of logicism among many  mathematicians and philosophers.  However, it  would be a 
mistake to claim that this is the only alternative.  Another important factor was the 
formalisation of axiomatic systems and the metamathematics of proving consistency and 
completeness. For this we should hail Hilbert more than he has been given credit for in 
the development of modern logic.
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 If I were to pick out the major philosophers and mathematicians responsible for 
the emergence of modern logic they would be as follows in chronological order: Thales, 
Pythagoras (both for introducing deductive proofs I mathematics), Aristotle for inventing 
formal logic, Euclid for providing close to a complete axiomatised geometry, Leibniz for 
efforts in constructing a universal logical calculus, Peacock and Gregory for the 
development of symbolical algebra, DeMorgan for De Mogran’s laws and quantifiers, 
Boole for the algebra of logic, Dedekind and Peano for the axiomatisation of arithmetic, 
Peirce and Schröder for the development of the logic or relations, Frege for his notations, 
concept of number, the use of function and argument and quantifiers, Hilbert for his 
metamathematics and finally at this 100th anniversary of the publication of Principia 
Mathematica, Russell and Whitehead for binging it all together.
 There is a curious paradox of the intimate connection between arithmetic and 
logic.  If axiomatisation is one of the necessary components of modern logic then modern 
logic definitely did not emerge until after the axiomatisation of arithmetic in the 
nineteenth century.  Yet, the emergence of modern mathematics happened in what is 
acknowledged as the golden age of mathematics perhaps beginning with Descartes, 
Fermat and Pascal in the seventeenth century  and reaching its peak with Euler, Lagrange 
and Laplace in the eighteenth century  and ending with Gauss and Galois at the beginning 
of the nineteenth century.  In the this development axiomatisation of arithmetic had not 
yet occurred but the most profound and long lasting contributions to algebra and analysis 
in the early nineteenth century  had already been made.  Why was there not a parallel 
golden age of logic during this two hundred period?  It thing the reasons are complex but 
it does show that the connection between logic and arithmetic may not be as intimate as it 
is taken to be. 
 One answer that has been discussed in my presentation is that  logic had not yet 
been algebrised.  If Leibniz’s attempt at algebrisation of logic had been successful as 
Descartes’ algebrisation of geometry, then the parallel golden age of logic would also 
have flourished.  Hence, we have a double edged assessment of Leibniz.  Despite 
Leibniz’s invaluable contribution to modern logic as Couterat has acknowledged, Leibniz 
was also responsible for the stalling of the progress.  We could blame Leibniz for not 
working full time on this project and wasting too much time with theology, metaphysics 
and other matters.  But the defenders of Leibniz would argue that if Leibniz did not 
operate as an encyclopaedic dilettante that he would not even have come up with the idea 
and attempt of developing a universal logical calculus to begin with.  Furthermore, why 
place all the burden on Leibniz?  Why could his successors like Wolff and Kant not have 
carried forth the task?  

The proper answer is that other factors were missing as well, that some 
development of symbolisation in algebra itself was necessary, as we have clearly seen in 
this presentation, for the algebrisation of logic, which must precede its axiomatisation.  
Even if Leibniz had been successful in algebrising logic and building a sentential 
calculus, modern logic still would not have emerged because a clear notion and notations 
of quantifiers was not available until Frege for the development of a predicate calculus; 
and because the metamathematics of the Hilbert programme of proving consistency and 
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completeness of any formal system and hence of the propositional and predicate calculus 
combined together as first order logic was not available in any  complete sense of ‘formal 
logic’.

 For those who may be feeling that I have given an overdose of Leibniz let  me end 
with a quotation from a mathematician whose contribution to logic has not properly been 
discussed in this presentation and this quotation succinctly  captures the theme that I 
began with in the Introduction and ended with at the end of section 4:

We know that mathematicians care no more for logic than logicians for 
mathematics.  The two eyes of exact science are mathematics and logic, 
the mathematical sect puts out the logical eye, the logical sect  puts out the 
mathematical eye; each believing that it sees better with one eye than with 
two. [De Morgan, 1858, 71] (Valencia 2004, 392)8
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